
The State of Open Source Security

Vulnerabilities

WhiteSource Annual Report 2020

Open source components have become an integral part of today’s software applications — it’s impossible to keep up

with the hectic pace of release cycles without them. As open source usage continues to grow, so does the number

of eyes focused on open source security research, resulting in a record-breaking number of published open source

security vulnerabilities in 2019.

This research report focuses on open source security’s weakest and strongest points in the hopes of bringing some

clarity the fast-paced and complex space of known open source security vulnerabilities.

In this report we’ll be looking at the number of open source vulnerabilities published this year, and then take a closer

look at open source security vulnerabilities in popular programming languages, most common CWEs over the years,

open source vulnerabilities’ scoring and severity, and vulnerabilities in the most popular open source projects that

we all use and love.

Open Source Security Vulnerabilities Are

ON THE RISE

According to the WhiteSource database, aggregated from the NVD, dozens of security advisories, peer-reviewed

vulnerability databases, and popular open source issue trackers, the number of disclosed open source software

vulnerabilities in 2019 skyrocketed to over 6000 reported vulnerabilities.

This can be attributed to the rise in awareness open source security following the widespread adoption of open

source components and the massive growth of the open source community over the past few years, along with the

media attention directed at recent data breaches. The Number of Reported Open Source Vulnerabilities Rose by

Nearly 50% in 2019.

Open Source Security Vulnerabilities per Year

2010

7000

6000

5000

4000

3000

2000

1000

0

2011 2012 2013 2014 2015 2016 2017 2018 2019

Unfortunately, users are not always able to benefit
from the community’s efforts. Only 84% of known
open source vulnerabilities appear in the NVD.

Information about vulnerabilities is not published

in one centralized location, rather scattered across

hundreds of resources, and sometimes poorly

indexed — often making searching for specific data
a challenge.

While 45% of reported open source vulnerabilities
are not initially reported to the NVD, many end

up being published in the NVD, months after

being reported in other resources. Based on

WhiteSource’s database, only 29% of all open

source vulnerabilities reported outside of the NVD

are eventually published in it.

Tech Giants have invested heavily in better securing

and managing open source projects over the past

few years, and the community is working hard at

security research to publish newly discovered open

source security vulnerabilities along with a fix.

The fix will usually be an updated version or a patch
for the vulnerable code.

Over 85% of open source
security vulnerabilities are
disclosed with a fix already
available.

Good News Bad News

Only 84% of known
open source vulnerabilities
eventually appear in the
NVD.

PREDICTIONS

Given the continued increase of both open source usage and

security research, the number of reported open source

vulnerabilities will surely keep rising.

In addition, we’re starting to see the open source community looking for new

initiatives in order to address the chaos in the open source security process. One

good example is the GitHub Security Lab, which aims to help researchers, open

source project maintainers, and users to easily report suspected vulnerabilities

in a secure manner without exposing a zero-day vulnerability into the world.

GitHub’s embedded disclosure process will encourage open source project

maintainers to properly report vulnerabilities, rather than just push a fix. Having
the maintainers themselves report vulnerabilities should also lead to higher-

quality metadata, like affected versions and fixed-in versions, as opposed to a
third party reporting the problem.

Our concern is that, while these tools will help to report vulnerabilities in a

proper manner, they will probably only aggravate the current problem as

software developers are already struggling to keep up with the increased

rate of reported open source vulnerabilities.

Which Programming Languages Are

MOST SECURE?

C still has the highest percentage of vulnerabilities due to the high volume of code written in this language.

However, the numbers are continuously trending down because other languages are also becoming popular.

That said, PHP’s relative number of vulnerabilities has risen significantly, while there’s no indication of the same rise
in popularity.

Shout-out to Python, which still has a relatively low percentage of vulnerabilities, even though its popularity, especially

in the open source community, continues to rise. Hopefully, this is a result of secure coding practices and not lax

security research for python projects.

Looking at the drastic overall rise in the number of vulnerabilities in 2019, we couldn’t help but wonder whether it

was consistent across the top programming languages.

We compared how the top seven coding languages stack up when it comes to reported open source vulnerabilities

in 2019, and then compared those numbers to the past ten years.

Open Source Vulnerabilities per Language, 2019 vs. 2009-2018

2009-2018 2019

Which CWE’s Do We Need
To Watch Out For In 2020?

Another aspect we wanted to look at was the types of

vulnerabilities that were most common in 2019.

The top five CWE’s in 2019 have been consistent over
the past several years, and are all related to information

disclosure.

What’s concerning is that the most common CWE’s are

due to simple code errors and imprecise coding, that all

developers could avoid by sticking to fairly basic coding

standards.

Most Common CWE’s in 2019

Most Common CWE’s per Year, 2014-2019

While they are not in the top five, it’s interesting that CWE-352 — Cross-Site Request Forgery (CSRF), has emerged in
the top 10 CWEs this year, and that CWE-89 — SQL Injection, re-emerged after it wasn’t one of the top CWE’s since
2015. This might be due to an increase in the volume of open source web projects developed, and it might indicate

that web vulnerabilities are on the rise and something we should be mindful of when coding.

Most Common CWE’s per Year,

2014-2019

When we examined the top three CWEs for the

top programming languages, we noticed that

three CWEs were at the top of the list for all of

the languages, except C:

 Cross-Site-Scripting (XSS) (CWE-79)
 Information Leak / Disclosure (CWE-200)
 Input Validation (CWE-20)

It is not surprising to see that most of the

languages share quite a few of their top

CWEs. Researchers are increasingly relying

on automated detection tools to find security
vulnerabilities, and XSS and Input Validation
issues are relatively easy to find with these
types of tools.

Another factor that might contribute to the

consistency of Information Exposure across

most languages is that it’s such a general

issue that a variety of vulnerabilities are most

probably grouped under this category.

VULNERABILITY SEVERITY SCORING:
AN OBJECTIVE PRIORITIZATION

STANDARD?

The rising number of reported vulnerabilities demands

that development teams quickly prioritize their security

alerts. The CVSS (Common Vulnerability Scoring System)
score is usually the go-to parameter for remediation

prioritization, but should it be?

CVSS was updated several times over the past few

years (v2 to v3, and most recently v3.1), in the hopes of
achieving a measurable, objective standard that helps

support all organizations and industries. However, it

has also changed the definition of what a high severity
vulnerability is.

We looked at over ten thousand vulnerabilities from

2016 to 2019 and checked their CVSS v2, v3.0, and v3.1
to compare the severity breakdown of vulnerabilities in

each scoring version over the past four year.

The most noticeable change that we saw in the update

from v2 to v3 is that scores rose substantially, since a
vulnerability that would have been rated as a 7.6 under
CVSS v2 could quickly find itself with a 9.8 under CVSS
v30. With CVSS v3.0, teams faced a higher number of
high and critical severity vulnerabilities.

Still missing are the tools to prioritize and address them,

or even fully understand the vulnerabilities’ impact, on

their project.

Severity Break-down:

CVSSv2.0, vs. CVSSv3.0, vs. CVSSv3.1

Looking at the severity distribution of new CVSS v3.1
score, we can see that this is not a normal distribution,

since 17% of the vulnerabilities are critical and only 2%
are low.

While the community has been working to find an
objective severity scoring standard to help users

address the evolving security landscape, the standard

is yet to be perfected. Additional factors that might

cause this imbalance are the heightened focus on high

and critical issues, and the fact that creating a CVE is a

time-consuming effort that some prefer to avoid when it
comes to lower-severity issues.

The question remains: how can we expect teams to

prioritize vulnerabilities efficiently when over 55% are
high-severity or critical?

CVSS v3.x Severity Breakdown over time

50%

40%

30%

20%

10%

0%

Low Medium High Critical

2016 20182017 2019

Top Open Source Vulnerabilities
Reported In 2019

Digging into the data on open source security vulnerabilities — their distribution across years, types, or severity

scores, it’s easy to forget that these issues occur in practically all of our favorite software projects — that just happen

to be open source.

Wrapping up, let’s take a look at the open source projects impacted by the open source security vulnerabilities that

we’ve been studying so closely.

The most important takeaway from this list is that just because popular open source projects have vulnerabilities,

that doesn’t mean they are inherently insecure.

It only means that as a user of open source projects you need to be aware of the security risks and make sure to

keep your open source dependencies up to date.

Open source components have become an integral part of our software projects. The open source vulnerabilities

landscape might seem complex and challenging at first, but there are ways to gain visibility and control over the
open source components that make up the products that we release.

