
Attacks Move Beyond

Vulnerabilities
Malicious packages are a growing threat, and they

may already have infiltrated your applications.

- Special Report: Software Supply Chain Malware

• 2- Special Report: Software Supply Chain Malware

Key findings:
• The fox is in the henhouse. Mend.io’s 360 degree malicious package protection reveals thousands of malicious

packages in existing code bases.

• Malicious package attacks skyrocketed. The number of malicious packages published to npm and rubygems in

2022 ballooned 315 percent compared with 2021.

• Malicious package versions grew 147 percent from 2021 to 2022.

• Malicious package exfiltration attacks are on the rise. Risk vector analysis reveals a growing trend of exfiltration

attacks that can combine several risk vectors — and often succeed. 85 percent of malicious packages discovered in

existing applications were capable of exfiltration – causing an unauthorized transmission of information.

• 3- Special Report: Software Supply Chain Malware

Malicious Package Trends
When it comes to applications and software, the key word is ‘more.’ Driven by the needs of a digital economy,

businesses depend more and more on applications for everything from simplifying business operations to creating

innovative new revenue opportunities. Cloud-native application development adds even more fuel to the fire, driving
growth in the application development market that is forecast to reach $1.6 billion by 2030.

However, that word works both ways: Those applications are often more complex and use open-source code that

contains more vulnerabilities than ever before. Then too, threat actors are creating and using more attack methods

and techniques, often in combination.

 Ultimately, we end up with a smorgasbord of attack opportunities for threat actors, who use an expanding quiver of

risk and attack vectors to build more accurately targeted attacks. In other words, don’t expect to see these numbers

do anything but increase

Case in point: The multi-digit jump in monthly attack numbers from 2021 to 2022. The totals really started to ramp

up in October of 2021, and we haven’t looked back since. The 2021 monthly attack low was 13 in January. For 2022,

it was 494.

Malicious packages published

Malicious packages detected per month

2021

2022

3,297

13,695

315% increase

Month 2021 Total malicious
packages detected
per month

2022 Total malicious
packages detected
per month

January 13 530

February 203 607

March 224 1,606

April 89 494

May 20 500

June 32 2,253

July 76 2,985

August 161 1,727

September 280 803

October 585 636

November 976 947

December 638 607

Total 3,297 13,695 (315% increase)

https://www.acumenresearchandconsulting.com/application-development-software-market
https://www.mend.io/risk-report/
https://www.mend.io/risk-report/

• 4- Special Report: Software Supply Chain Malware

2023 starts with a bang

When we compare January-February malicious package activity over the past three years, it’s clear that one of these

years is not like the others. As it turns out, the enormous activity of early 2023 came from spam attacks launched by

several actors. One attack came from new npm user 'Zalastax', who our researchers observed uploading nearly 20,000

packages. According to the package's readme, it 'depends on every package in npm,' and the author even used a script

to make that happen automatically. The team reached out to the author to understand his intention, and he replied

that it was a "silly project with no purpose and done out of curiosity." In a separate attack, attackers jammed the npm

repository with more than 15,000 spam packages that included phishing links.

Version Control

On average, malicious packages had about four versions. We saw a trend toward first releasing a non-malicious version
before releasing malicious versions. There are a couple of interesting things going on here. The initial clean release

is likely due to a common belief that different, more stringent assessments are run on first releases compared with
updates. We also see version releases reflect a learning curve. It’s hard to craft a package that has a high probability of
exfiltration, so malicious actors often tinker and adjust their code between releases.

January

February

Source: Mend Supply Chain Defender

Total malicious packages detected

Jan.

Feb.

13 530 59,919

203 607 27,133

2021 2022 2023

Malicious package versions published, 2021–2022

Month 2021 Total malicious
packages detected
per month

2022 Total malicious
packages detected
per month

January 28 1,895

February 461 2,216

March 373 4,118

April 194 6,132

May 39 2,033

June 115 4,975

July 203 6,407

August 930 6,961

September 1,323 2,590

October 4,013 1,960

November 4,593 2,409

December 2,843 1,203

Total 15,115 37,379 Source: Mend Supply Chain Defender

https://www.linkedin.com/posts/activity-7023616272374411266-D6Zx/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/activity-7023616272374411266-D6Zx/?utm_source=share&utm_medium=member_desktop
https://thehackernews.com/2023/02/attackers-flood-npm-repository-with.html
https://thehackernews.com/2023/02/attackers-flood-npm-repository-with.html

• 5- Special Report: Software Supply Chain Malware

Brandjacking is an activity whereby an attacker acquires or otherwise assumes the online

identity of another company or an owner of a package and then inserts a malicious code. It doesn’t

necessarily mean he actively steals something, but just takes advantage of an opportunity to take

ownership related to the brand name.

Dependency confusion happens when a malicious package in public repositories has the same

name as an internal package name. The attacker then uses this so-called feature to trick dependency

management tools into downloading the public malicious package rather than the private, non-

malicious package.

In a typosquatting attack, an attacker publishes a malicious package with a similar name to a

popular package, in the hope that a developer will misspell a package name and unintentionally fetch

the malicious version.

With dependency hijacking, an attacker obtains control of a public repository in order to upload a

new malicious version.

Malicious Package Attack Vectors
In order to deliver a malicious payload via an open source package, attackers must find a way to get the package
downloaded. That means attackers need to find a way to fool someone – or something – into downloading it. Let’s
take a closer look at several of the ways that malicious packages can be downloaded. There are four basic attack

vectors for malicious packages: brandjacking, typosquatting, dependency hijacking, and dependency confusion.

Brandjacking and typosquatting were the original malicious package attacks, and they remain an integral part of

the attack vectors used today. Dependency hijacking and dependency confusion are more recent additions.

Attack Vectors and Risk Vectors: What’s the Difference?

They may sound similar, but these terms describe separate things.

An attack vector is the method of attack used by a bad actor, while the term risk vector is used to indicate the risk of

a given package.

Here’s an example: Say we detect a malicious package with a name that’s one letter off from that of a popular
package; that malicious package contains a malware dropper and malicious obfuscated code.

The attack vector used is typosquatting — the attacker is hoping that a developer will misspell the package name

and call the malicious version by accident. The malware dropper and obfuscated code are the risk vectors.

• 6- Special Report: Software Supply Chain Malware

Risk vectors
Malicious package risk vectors have been steadily growing in both quantity and sophistication, and we wanted to get

a clearer picture of usage and deployment. Using an algorithm-aided selection process, the Mend.io research team

collected versions of 61,009 malicious packages from npm and RubyGems to analyze the risk types posed by malicious

packages. By tagging the malicious packages according to risk types, then analyzing the frequency and distribution

of these risk types, the team created a profile of risk vectors and risk severity across the data set. Spam packages
emerged as the most prevalent threat source, followed by suspect publishers (publishers that had previously been

known to release one or more malicious packages).

Top Risk Vectors

Other Risk Vectors

Multivector attacks

Severity breakdown

Spam Package Suspect Publisher Other

75% 25% 5%

Medium High Critical

71% 28% 1%

A closer look at ‘other risk vectors’

Although small, the possibilities hidden in the ‘other risk vector’ category intrigued us, so we dug into more granular

detail to get a clearer sense of how threat actors were using and combining these more targeted risk vectors. Of this

subset, attacks using exfiltration, often combined with contacting external hosts, emerged as a concerning trend.

0.3% - Crypto Miner

0.3% - Protestware

4% - Remote Reverse Shell

6% - Malicious Obfuscated Code

11% - Malware Dropper

47% - Contacting External Host

56% - Exfiltrating Sensitive User System Data

1% - 3 risk vectors (38)

40% - 2 risk vectors (1,299)

59% - Single risk vectors (1,949)

Note: Total is greater than 100 percent due to multiple vectors used in some attacks.

These attacks illustrated the increasingly sophisticated methods used by a growing number of attackers. Nearly 70

percent were of high or critical severity, and more than 40 percent contained more than one risk vector. For example,

attackers combined exfiltration with malicious obfuscated code to avoid detection, and some added malware droppers
to install malicious code and spread it across the code base to make it harder to remove.

• 7- Special Report: Software Supply Chain Malware

A Family Tree With Poison Apples

Here’s a look at how different attack risk factors relate to each other
in the malicious package family tree.

CWE-912
Hidden Functionality

CWE-510
Trapdoor

CWE-200
Exposure of Sensitive

Information to an

Unauthorized Actor

CWE-400
Uncontrolled

Resource Consumption

CWE-506
Embedded

Malicious Code

CWE-507
Trojan Horse

Spam package
Either empty or does

nothing. It could serve
as a placeholder for a

potential future attack.

Exfiltrating sensitive
user system data

Unauthorized access
to sensitive system

information.

Remote reverse shell
Enables attacker access
via remote connection,

allowing them to control
the system remotely.

Crypto miner
Uses the system

resources for
cryptocurrency mining.

Contacting
external host

Sends requests/data to
an external host that
differs from declared

functionality.

Malware dropper
Contains a Trojan

horse, allowing the un-
authorized installation

of other potentially
malicious software.

Packages coming from
a known producer of
malicious packages
This publisher has a
history of delivering
packages that were

previously flagged as
malicious.

Protestware
Contains code that

differs from the stated
functionality. This

can be as simple as
opening a web URL

to protest or in some
cases could delete files.

Exfiltrating sensitive
private user
information

Unauthorized access
to sensitive system

information, such as
browser data, applica-

tion tokens, etc.

Malicious
obfuscated code

Intentionally difficult
to understand or
reverse-engineer.

This is often used by
attackers to conceal

their intentions.

68% of attacks critical or high severity

• 8- Special Report: Software Supply Chain Malware

Malicious Packages In Existing Code Bases
If malicious packages are seen as invaders, one scenario is even more disastrous than inviting these invaders

into your code during development: having invaders already in your code base, wreaking havoc while you

remain unaware.

This scenario isn’t just a hypothetical.

At Mend, our researchers recognized the need not only to detect malicious open source software and stop it from

entering registries and repositories, but also to shine a light on existing code across applications that have already

been built and released. When Mend launched a new feature to detect malicious packages that had been inserted

into existing applications, we found thousands of instances of these packages in customers’ code bases.

The identified packages had entered via repositories and registries that didn’t use an existing Mend solution
to block malicious open-source software.
When our researchers took a closer look at which packages were present, we found that they fit into four categories
based on the motivation of the developer of the malicious package: exfiltration, developer sabotage, protestware,
and spam.

Nearly 85 percent of malicious packages discovered in existing applications were capable of exfiltration – causing an

unauthorized transmission of information.

For organizations that rely on protected or confidential information, exfiltration represents an existential risk. Once a
malicious package capable of exfiltration makes its way into a code base, it can potentially spread widely and create major
breaches with both reputational and regulatory implications.

Perhaps counterintuitively, exfiltration’s dangers exist in part because these packages don’t wreak enough havoc on
applications. Threat actors seeking protected information can maximize the amount of information they collect before a

malicious package is detected and removed by ensuring their package works quietly, without attracting undue attention.

Malicious package types

seen in existing code bases, by motivation

Exfiltration 85%
Developer Sabotage 11%
Protestware 4%
Spam 0.1%

Source: Mend.io SCA

• 9- Special Report: Software Supply Chain Malware

However, staying quiet isn’t always what a threat actor hopes to achieve by distributing malicious open source software.

Some malicious package creators intend for their users to find out – like the developer responsible for developer sabotage

in popular npm libraries “colors” and “faker.” This developer intentionally committed an infinite loop that broke the libraries
– and the millions of projects that depended on them.

This act of developer sabotage applied to some of npm’s most popular libraries was responsible for over 11 percent of the

malicious packages detected in Mend customer code bases.

The developer, Marak Squires, explained that his intention was to stop supporting large companies with his “free work.”

While so far Squires is a lone wolf (and the project has now been forked so that his work is no longer required), rogue open

source developers could pose an ongoing threat to the proprietary applications that depend on their projects.

Protestware represents another emerging type of malicious package deployed by developers who want organizations to

notice. The war between Russia and Ukraine gave rise to several malicious packages in this category.

Some of these protestware packages print messages about the war without altering files, but others are designed to
identify IP addresses located in Russia and Belarus, then take specific actions like deleting and overwriting files.

For enterprises with a widespread global presence, protestware is an emerging area of risk that will likely evolve and

change with each conflict. Its worst impacts may involve different geographic areas with each conflict, impeding
organizations’ ability to trust that the same piece of software will work the same way in every region.

Finally, spam packages are either empty or do nothing. They could serve as a placeholder for a potential future attack.

360 Degree Protection From Malicious Packages

Malicious packages are just as harmful as malware, but most companies have not built effective detection and
blocking into their application security strategies. At Mend, we believe that such protection is an integral aspect

of open source software security, which is why Mend’s Software Composition Analysis (SCA) solution provides

complete protection against malicious packages. Our technology:

• Proactively blocks malicious software before it’s downloaded and detected

• Alerts on malicious software that may already be in the code base.

Our 360 degree protection helps developers secure against the growing threat of malicious packages without

compromising speed or agility. Even better, it’s based on the expertise of Mend Research. In the last three

years, the Mend research team has successfully identified 100 percent of malicious RubyGem packages and
99.8 percent of npm packages. Mend researchers have also been the first to identify a number of new malicious
packages, such as the dYdX crypto malicious package attack, so that organizations were able to take action

against these security issues.

https://www.mend.io/sca/
https://www.mend.io/resources/blog/popular-cryptocurrency-exchange-dydx-has-had-its-npm-account-hacked/

• 10- Special Report: Software Supply Chain Malware

Organizational Impact: Malicious Packages Are More Dangerous than Vulnerabilities

When attackers gain access to your applications via a malicious package, they can impact your organization in multiple

ways. Once a developer downloads a malicious package, how much damage it does will depend on several key factors:

1. Intent – When threat actors infiltrate using a malicious package, their intent substantially determines the impact.
A threat actor trying to inform people about a war or protest action with annoying messages has a lower overall

impact than one trying to steal information or turn developers’ machines into cryptocurrency miners.

2. Organization type – Attacks designed to exfiltrate personal information will have a larger, potentially long-term
impact on companies trusted with sensitive data, ransomware attacks that disable systems can have outsize

impact in organizations like hospitals, where lives depend on uptime.

3. Duration – When malicious packages are discovered quickly and removed completely, the damage they cause can

be limited. The greatest damage can be caused by packages that remain undetected for months or years while

quietly delivering their payload.

4. Spread – Some of the most dangerous malicious packages are designed to provide initial access to a network, at

which point the threat actor can move laterally through systems to steal passwords or protected information in

order to gain even more access.

Unlike vulnerabilities — which can and do often exist for months or years in application code without being

exploited — a malicious package represents an immediate threat to your organization.

Think of it like this: If your applications and organization are a house, then attackers are like burglars. A vulnerability

is your proverbial unlocked window: It could let a burglar in some day, but that’s only a possibility. On the other

hand, a malicious package is like accepting a FedEx box that already has the burglar inside.

Conclusion
The increasing threat of malicious package attacks adds further urgency to the growing need for a new approach to

application security programs. Certainly, the public sector is taking an increased interest in cybersecurity. Legislation
such as the proposed Securing Open Source Software Act in the U.S., the Cyber Resilience Act from the European

Union, and the Australian Cyber Security Strategy drives home the need for global organizations to rethink AppSec.

The fact is, applications are the lifeblood of the global economy, and threat actors know it. And unlike open-source

vulnerabilities — which can and do often exist for months or years in application code without being exploited -– a

malicious package represents an immediate threat to your organization. Malicious packages don’t enter your code

base to do nothing. If they’re in your application, your organization already has a problem. Organizations may have

different thresholds for acceptable risk from vulnerabilities, but the only acceptable number of malicious packages to
have in your application code is zero.

The question is, does your application security strategy have a plan in place to defend against this new threat?

How can mend.io help?
Ready to discover how to secure the software supply

chain with modern application programs?

Learn More

https://www.hsgac.senate.gov/media/majority-media/peters-and-hawley-introduce-bipartisan-bill-to-help-secure-open-source-software/
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.homeaffairs.gov.au/about-us/our-portfolios/cyber-security/strategy/2023-2030-australian-cyber-security-strategy#:~:text=%E2%80%8B%E2%80%8B%E2%80%8B%E2%80%8B%E2%80%8B,2030%20Australian%20Cyber%20Security%20Strategy&text=The%20Strategy%20will%20help%20us,Australia%27s%20cyber%20security%20and%20resilience.
https://www.mend.io/malicious-package-protection/?utm_source=pdf&utm_medium=report&utm_campaign=appsec&utm_content=360_report
https://www.mend.io/malicious-package-protection/?utm_source=pdf&utm_medium=report&utm_campaign=appsec&utm_content=360_report

About mend.io
mend.io, formerly known as WhiteSource, effortlessly secures what developers create. Mend uniquely removes the
burden of application security, allowing development teams to deliver quality, secure code, faster. With a proven track

record of successfully meeting complex and large-scale application security needs, the world’s most demanding

software developers rely on Mend. The company has more than 1,000 customers, including 25 percent of the

Fortune 100, and manages Renovate, the open- source automated dependency update project.

For more information, visit www.mend.io, the Mend blog, and Mend on LinkedIn and Twitter.

