
Malicious Packages: A
Growing Threat to the
Software Supply Chain

Sponsored by

WHITE PAPER

Malicious Packages: A Growing Threat to the Software Supply Chain 2

Table of Contents
Executive Summary……………………….……….…1

The Growing Threat
of Malicious Packages……....………………..……2

Increased Risk…………………………....……..….….6

Failing Solutions………………………………..….….7

Combining Awareness
With the Right Tools………….……………....……..8

Meet Mend.io’s Malicious
Package Protection Solutions……………….….9

Next Steps.………………………………………...…..11

Malicious Packages: A Growing Threat to the Software Supply Chain 3

The global economy runs on software applications, and their function and security is critical to every

company’s success. Many applications have exploitable vulnerabilities that modern defenders struggle

to effectively detect and remediate. In addition to the growing number of vulnerabilities, today’s security

teams face the emerging challenge of malicious packages.

Software developers build approximately 80% of software applications using open-source code,

which opens up a world of opportunity for today’s threat actors.1 Code package repositories such as

npm and RubyGems allow anyone to store or publish packages, and unfortunately that can include

packages containing malware. These are known as malicious packages. Today, threat actors create and

use malicious packages to launch attacks with the goal of slipping past defenses, activating a harmful

malware payload on an initial victim and helping threat actors gain access to wider supply chains.

Malicious packages employ tricky evasion techniques to breach supply chains and escape notice. Once

downloaded, the malware in malicious packages can use a number of risk vectors to compromise systems

while spreading down the supply chain to initiate further information theft, cryptomining, cryptojacking

or creating botnets within a new victim’s network. As a relatively recent phenomenon, malicious

packages benefit from a lack of developer awareness and existing trust in open-source repositories
and established supply chains. Worse yet, most current application security solutions and tools aren’t

equipped to identify and remediate these malicious packages.

Time is critical for organizations looking to secure their software supply chains, as malicious package

attacks are increasing at an alarming rate. From 2021 to 2022, there was an identified 315% increase
in the number of malicious packages published to the npm and RubyGem registries.2 Companies must

prioritize this rapidly growing problem. This starts by learning about malicious packages, exploring why

they are dangerous, what contributes to their rise, why attempted solutions are failing and where your

organization can look for real solutions to this software supply chain threat.

1Mend.io Open Source Risk Report. https://www.mend.io/wp-content/media/2022/12/Mend-Open-Source-Risk-Report.pdf
2Mend.io Malicious Packages Special Report. https://www.mend.io/malicious-package-protection-lp/?utm_sf_camp=blog

Malicious Packages: A Growing Threat to the Software Supply Chain 4

The Growing Threat
of Malicious Packages
Today’s cybercriminals and rogue security researchers

never rest when it comes to searching for easier, faster,

and more rewarding methods of attacking and breaching

cyber defenses. Whether looking to corrupt target

systems, breach networks for lateral movement, steal

information or perform reconnaissance for future attacks,

modern threat actors continue to raise the bar in their

effort to access an organization’s sensitive data. Malicious

packages can deliver maximum bang for the bad guy’s

buck. It can be as simple as hiding a malware payload in

open-source code and tricking a careless developer into

using it, or elevating bugs in package manager systems

and then benefitting from the opportunities afforded by
the scale of a corrupted software supply chain.

According to Mend.io team sources, 2022 saw 13,695
individual malicious package supply chain attacks based

on npm and RubyGem registries. Q3 in 2022 saw a 79%

increase over Q2 in malicious packages published.3

The recent explosion in malicious packages is easy to

understand, as modern software supply chains provide

excellent targets. These ecosystems offer numerous

attack surfaces, including software dependencies,

version control systems, testing and deployment tools,

cloud-hosting providers, and numerous applications

created with open-source code. The popularity of

open-source use with developers also presents an

opportunity as threat actors flood repositories like
npm and RubyGems with 10 malicious packages per

day or more according to the Mend.io Open Source

Risk Report.4

Spamming is popular for delivering malicious packages

because smart threat actors understand the value of

scaling attacks with non-targeted distribution techniques,

hoping for the one hit that opens the floodgates of
downstream access. Most malicious packages work a

reconnaissance angle, usually exfiltrating information
for immediate financial gain or to aid in future targeted
attacks. Jeffrey Martin, vice president of product at

Mend.io, explains what security teams see today.

“Spam packages are by far the most common type of

malicious package, since that is the nature of spam.

Packages created by known publishers of malicious

content are next, followed by malicious packages that

exfiltrate sensitive information from target systems.
The most difficult types of malicious packages are
those that combine risk vectors such that they use

avoidance techniques as well as malware droppers

that automatically activate and disseminate the

malicious payload.”

Attackers also understand the potential rewards of a

patient trial-and-error approach as it relates to continually

improving their odds of success. They tirelessly use

package tester releases to help streamline processes,

eliminate errors, and improve code writing in the

effort to inject more malicious packages into software

supply chains.

3Mend.io Open Source Risk Report. https://www.mend.io/wp-content/media/2022/12/Mend-Open-Source-Risk-Report.pdf
4Mend.io Open Source Risk Report. https://www.mend.io/wp-content/media/2022/12/Mend-Open-Source-Risk-Report.pdf

Malicious Packages: A Growing Threat to the Software Supply Chain 5

ATTACK VECTORS

Threat actors use malicious packages to attack and

infect software supply chains as far as possible upstream

for maximum distribution and damage downstream.

Attackers currently employ the following basic types of

attack vectors for malicious packages:

Typosquatting
This attack vector involves an attacker taking or

“squatting” on a known, trusted package’s name and

attempting impersonation with slight typo changes

designed to trick developers. A real-life example would be

the case of reac1 and reect1, where these two packages

tried to mimic research test packages, add new users to

an operating system, and send outgoing http requests.5

Dependency confusion
In this attack vector, the threat actor creates a public

repository package with the identical name of an internal

package within the intended target system. The intention

is to trick the target’s dependency management tools

into downloading the malicious public package instead

of the safe internal one. Dependency confusion is a more

complex attack vector but has massive potential for

damage if successful. A real-life example of a successful

dependency confusion vector attack is the mrg-message-

broker case.6 In this example, threat actors designed a

malicious package similar to the grubhubprod-cookbook

package intending to steal environmental data.

Brandjacking
In brandjacking attacks, the attacker steals control of the

online brand identity of a popular legitimate package and

then inserts malicious code into the original known and

trusted package. This type of attack vector is challenging

for malicious actors to pull off, but can deliver a high

infection rate due to the popularity of known packages.

An example of brandjacking occurred when attackers

took control of popular npm packages style-resources-

loader and sass-loader.7 When an unsuspecting victim

installed and activated the new malicious package,

binaries downloaded a third-party component to collect

system information, allow a remote host connection,

and then allow remote code execution. Another well-

publicized example is the September 2022 case involving

the crypto company dYdX, where an attacker used a stolen

employee npm account to begin sending new versions

of legitimate packages owned and published by dYdX.8

Dependency hijacking
Dependency hijacking is an attack vector where a threat

actor obtains control of a public repository in order to

upload a new malicious version of an existing package.

Fake security research
This attack vector takes advantage of a popular repository

policy that allows companies to create packages solely

for research purposes. Attackers use that policy to create

fake security research packages designed only to collect

information on the sly.

5Mend.io NPM Threat Report. https://www.mend.io/wp-content/media/2022/02/Mend-npm-Threat-Repot-1.pdf
6 Mend.io NPM Threat Report. https://www.mend.io/wp-content/media/2022/02/Mend-npm-Threat-Repot-1.pdf
7 Mend.io NPM Threat Report. https://www.mend.io/wp-content/media/2022/02/Mend-npm-Threat-Repot-1.pdf
8 Mensfeld, M, (September, 2022). Popular Cryptocurrency Exchange dYdX Has Had Its NPM Account Hacked. Mend.io. Retrieved April, 2023
 from Mend.io

Malicious Packages: A Growing Threat to the Software Supply Chain 6

THE MOTIVATION BEHIND
MALICIOUS PACKAGES

Why do threat actors put forth such effort to slip malicious

code into software products and attempt to infect vast

supply chains? The short answer is to make money,

whether the payoff is immediate or long term. Most

malicious packages are designed to stealthily infiltrate
software, spread rapidly down a supply chain, and

immediately begin gathering environmental information

about every infected victim. Attackers use keyloggers,

screen scrapers, spyware, and adware to gather a wealth

of sensitive environmental information which can be

quickly sold on the dark web or used to leverage and

support future attacks involving more lucrative types

of financial fraud.

For example, the Russian tech giant Yandex suffered a

data leak in which source code from other global giants

such as Google, Amazon, and Uber reached the public

domain.9 Armed with such sensitive data, malicious actors

waste no time analyzing leaked code for vulnerabilities

they can exploit in future attacks up or down the

supply chain.

Control is another underlying theme driving the motivation

for malicious packages. Attackers see the installation of

malicious code and its flow down a software supply chain
as a means to gain control over multiple devices and

systems for whatever future nefarious activity promises

the most significant payback. Installing a connectback
shell enables threat actors to receive remote commands

for execution on a target device. This three-step process

includes connecting to the attacker’s server, receiving

execution commands, and sending back execution results.

Using malware-loaded packages to install bots on target

devices allows “bot herders” to expand botnets and

launch future bot attacks which help steal more data and

support cryptomining.

Cryptomining can be another lucrative benefit and
powerful motivator behind malicious packages. Mining

cryptocurrency is a resource-intensive undertaking,

so attackers will attempt to silently gain control of

multiple devices with widespread, non-targeted

umbrella attacks to steal technical resources to use for

mining cryptocurrency.

9 Ben Ari, T, (January, 2023). Yandex Data Leak Triggers Malicious Package Publication. Mend.io. Retrieved April, 2023 from Mend.io

Malicious Packages: A Growing Threat to the Software Supply Chain 7

INCREASING SOPHISTICATION

Despite a relatively short history, malicious packages

are growing in terms of sophistication and potential

negative impact across a supply chain. Early malicious

packages resembled early malware as they were often

indiscriminately targeted and relatively simple to remove.

Not so anymore, as some malicious package attackers

now apply an organized, calculated approach that evolves

based on collected feedback from a three-release launch

process. First tester versions may not contain harmful

payloads, with their purpose often being just to navigate

the usually more stringent initial defense assessments.

Malicious cargo will typically load in the following

package versions which include improved code that’s

been adjusted for better exfiltration, distribution, and
downstream damage.

The use of evasion techniques by attackers is becoming

more common and complex, complicating matters

for security teams and developers. Most attackers

rely on four standard evasion practices to disguise

malicious packages: pre and post-install scripts, basic

evasion techniques, shell commands and basic network

communication techniques. Bad actors now layer

intermediate evasions like code obfuscation and time

delays over these more basic techniques to throw off

dynamic threat analysis searching for malicious activity.

Today, more packages contain telemetry for data

collection. Attackers now take full advantage of the

noise and confusion created by “dependency hell,” hiding

harmful code in dependencies attached to valid content.

They also design packages to bypass automatic detection

tools, sending them from legitimate hosting providers or

mimicking popular brand names to deceive their victims.

Another level of sophistication utilizes packages’ stateless

and shifting nature to challenge defense teams. Safe

packages downloaded today may become dangerous with

malicious code tomorrow, as Maciej Mensfeld, principal

product architect at Mend.io, explains: “Packages

released today may not have many functionalities,

and if you analyze the packages initially, they won’t

present any malicious behaviors. However, they may

become malicious in a week or five weeks. This ability
makes it much harder because you have to reevaluate

packages daily.”

Attackers employ increasingly sophisticated techniques to

inject malicious packages into the software supply chain.

Still, once inside, the objective is simple—silently infect

as far and fast down the supply chain as possible. The

greatest danger lies in the inherent developer trust in

existing and established supply chains, allowing attackers

a significant opportunity and advantage. Attackers seek
to enter a supply chain upstream, leveraging this trust to

allow the spread of their malicious packages downstream

to impact a vast network of unsuspecting victims.

Unlike generic malware, malicious package attacks do not

commonly use persistence techniques or vulnerability

exploitation on infected devices, although some have

been observed. Methods of deployment, execution, and

communication still remain basic in many cases. However,

looking forward we can expect the sophistication of these

attacks to continue to grow.

Malicious Packages: A Growing Threat to the Software Supply Chain 8

Increased Risk
Modern organizations battling the growing threat of

malicious package supply chain attacks face increased risk

driven by three main factors: the widespread adoption

of open-source coding, lack of developer awareness

and commitment to security, and application

security program tools that fail to defend against

malicious packages.

Today’s developers source between 70 and 90 % of the

code used in software applications from open-source

code repositories like npm and RubyGems.10 According

to Mend.io team experts, the npm repository alone

offers around 3,190,220 code packages for developers

to freely use in the creation of new applications. Using

this open-source code makes life easier for developers,

and many treat open-source registries like modern app

stores, shopping for code with trust in its legitimacy

and safety. This free use of open-source code creates a

considerable security risk due to open-source registries’

unrestricted and uncontrolled nature. Threat actors take

full advantage of this opportunity as popular registries

like npm and RubyGems continue to see a consistent

flow of malicious packages daily.

A lack of developer buy-in regarding the importance of

application security also increases the risk of malicious

packages infecting a software supply chain. Balancing the

need for security with demanding development deadlines

can prove difficult for many teams and, unfortunately,
security can suffer. Also, organizations traditionally

incentivize developers to focus on software functionality

and features, so they’re not naturally geared toward

prioritizing security. As a result, developers don’t always

check all open-source code for updates or vulnerabilities,

and consistency checks aren’t as routine as they should

be—which all adds up to a greater opportunity for

threat actors.

10 Mend.io Open Source Risk Report. https://www.mend.io/wp-content/media/2022/12/Mend-Open-Source-Risk-Report.pdf

Malicious Packages: A Growing Threat to the Software Supply Chain 9

Failing Solutions
Many modern organizations struggle to combat malicious

packages. “It’s not that malicious packages are difficult
to detect and remediate so much as that people lack

the knowledge and technology necessary to do so in a

timely manner,” says Martin. “These are active attacks;

being reactive is not enough, and any delay is too much.”

Fast responses are critical when battling these attacks,

and security teams often lack both the awareness and

the tools needed to respond promptly. For example, in

attack vectors such as dependency confusion, package

management tools automatically download malicious

code, leaving developers unaware of a malicious

package’s existence. The time lag this creates can be

devastating to defenses.

Today’s defenders find that current solutions, tools and
approaches aren’t enough to defend against the threat

of malicious packages. “There’s a general consensus that

the tools out there and the solutions we’re attempting

right now aren’t measuring up,” Mensfeld says. “We

don’t yet fully understand all of the potential threats, all

of the ways attackers look to exploit the supply chain,

and for me, that’s the primary reason why we don’t yet

have all the tools.”

Many developers and security teams lack the technology

for either blocking the introduction of malicious packages

or detecting them in their existing code base. Many

current tools attempt only one but not both, leaving

security teams a difficult choice between blocking or
detection functionality. Also, much of the traditional

security technology available today lacks the capacity

to effectively scan for malicious packages. The solutions

claiming to provide scanning functions often employ

rudimentary technology that misses the majority of

malicious packages. Sadly, the de facto defense used by

many organizations today is to rely on announcement

updates from repositories that “find” and add the latest
known malicious packages to their vulnerability database.

Malicious Packages: A Growing Threat to the Software Supply Chain 10

Combining Awareness
With the Right Tools
The best defense against the growing threat of malicious

packages is a knowledgeable and alert developer

community in and around open-source registries like

npm. The use of open-source code is here to stay, but

there are measures organizations can take to make

these code sources safer for the entire open-source

community. Every organization should start by prioritizing

the education of developers on security best practices

while increasing their level of awareness and commitment

to security throughout the entire software development

lifecycle (SDLC).

Next, encourage your developers to follow some

basic software development safety guidelines

when using open-source code in their development

processes, including:

• Never blindly assume ownership of open-source

packages or trust the system of any registry

• Never install packages without running an assessment

• Encourage and incentivize developers to review all

package details to help combat typosquatting

• Immediately report inconsistencies to package

owners

• Maintain continuous environment awareness

and update only when confident about

the safety of content after deploying capable

assessment tools

Malicious Packages: A Growing Threat to the Software Supply Chain 11

AUTOMATED DETECTION AND
REMEDIATION TOOLS

As cybercriminals increasingly turn to automated

attack methods to gain an advantage over defenses,

it only makes sense for security teams to begin

employing automated detection and response

solutions. Automated detection and remediation

tools powered by artificial intelligence and machine
learning technology can gather data, perform analysis

to identify threat patterns, continually run scans for

suspicious activity, and quickly address threats by

containing, remediating or alerting security staff.

When humans handle all detection and response duties,

cyber incident response times bog down considerably.

However, organizations that replace manual review

with automated detection and response technology

will enjoy improved accuracy rates. Legacy screening

systems can deliver false positive rates as high as 95%,
but automated detection technology can reduce false

positive rates by up to 70%.11 Today’s industry-leading

automated detection and response tools deliver perfect

or near-perfect malicious content detection rate scores in

popular registries like npm and RubyGems. By choosing

automated detection and response tools that seamlessly

integrate into native developer workflows, organizations
can free up developers to focus on building better

software instead of wasting valuable time investigating

false positives.

11 Abdel Hadi, D, (January, 2023). Reducing false positives using contextual AI. AI. Retrieved April, 2023 from aimagazine.com

Malicious Packages: A Growing Threat to the Software Supply Chain 12

Meet Mend.io’s
Malicious Package
Protection Solutions
Malicious package supply chain attacks present a unique

challenge for today’s security professionals with few

proven solutions. The malicious package blocking

capabilities of Mend SCA and Mend Supply Chain

Defender are two notable exceptions.

MEND SOFTWARE
COMPOSITION ANALYSIS

The best time to stop malicious packages is before they

enter your code base. With Mend SCA, organizations can

block malicious packages from being downloaded or added

to your artifact registry, ensuring that they can never enter

your repositories or releases. Malicious packages can also

be blocked in the repository, using automated scans

at every code commit combined with a policy to block

these packages.

Mend.io’s Software Composition Analysis (SCA) solution

provides complete protection against malicious packages.

Our technology:

• Proactively blocks malicious software before it’s

downloaded and detected

• Alerts on malicious software that may already be in

the code base

Mend.io’s 360 degree protection helps developers secure

against the growing threat of malicious packages without

compromising speed or agility. Even better, it’s based on

the expertise of Mend.io Research. In the last three years,

the Mend.io research team has successfully identified 100
% of malicious RubyGem packages and 99.8 % of npm

packages. Mend.io researchers have also been the first
to identify a number of new malicious packages, such

as the dYdX crypto malicious package attack, so that

organizations were able to take action against these

security issues.

Malicious Packages: A Growing Threat to the Software Supply Chain 13

MEND SUPPLY CHAIN DEFENDER

Mend Supply Chain Defender is the most

comprehensive and effective detection and

remediation tool available today for protecting

npm and RubyGems registry open-source users from

the supply chain damage resulting from a malicious

package’s toxic payload. Supply Chain Defender excels

at scanning new open-source releases and existing

packages with dozens of comprehensive tests to identify

malicious content, and doesn’t forget about previous

packages potentially becoming malicious. “Our scans

track current incidents as well as retroactively scanning

historical packages to make sure things we weren’t

sure of didn’t become malicious in later stages,”

Mensfeld says.

• Supply Chain Defender operates in near real time,

detecting and blocking malicious packages in new

releases or existing code bases. For example, in the

dYdX incident in Sept 2022, Supply Chain Defender

detected a malicious package within 30 minutes of

its initial release. In another incident in October 2022,

Supply Chain Defender alerted 17 minutes after the

publishing of the first malicious “index.js” package
according to Send.io team experts.

• Supply Chain Defender is developer-friendly as it’s

designed for exception-based alerting that doesn’t

interfere with developer workflows or slow down
the development process. Supply Chain Defender

also uses innovative classification rules that block
suspicious packages before they reach developers,

enabling them to work uninterrupted with code

they can trust.

• Supply Chain Defender helps manage security

and compliance for your organization while

making the open-source community safer.

Supply Chain Defender aids in the management of

security and compliance processes across the SDLC

by providing an analysis of open-source licensing and

other metadata. This industry-leading automated

detection and remediation tool sends malicious

activity reports (sometimes hundreds daily) to

respective package registry security teams as soon

as possible to improve the overall security of the

open-source community. As Mensfeld explains, “We

don’t only protect our customers, we also protect the

community because we report all of our findings to
the appropriate registries. If we consider an incident

severe, we also contact the companies we believe are

being targeted.”

Malicious Packages: A Growing Threat to the Software Supply Chain 14

Next Steps
To talk to an expert or schedule a demo to learn more about how your organization can identify
and remediate malicious packages with Mend.io’s industry-leading malicious package security solutions,
visit https://www.mend.io/contact-us/

