@Mend.io

Your AppsSec strategy
isn‘t ready for Al. Yet.

A CISO’s guide to securing Al from the start

Executive summary

The rapid adoption of Artificial Intelligence (Al) in 2025 has transformed how organizations operate,
making Al a core component of modern applications. From chatbots enhancing customer
interactions to autonomous agents streamlining workflows, Al systems are now integral to the
infrastructure of countless industries. However, the security of these systems has not kept pace with
their rapid deployment, leaving organizations vulnerable to emerging threats. These include data
leakage, where sensitive or proprietary information may be inadvertently exposed; malicious use of
Al systems, such as their exploitation for generating convincing phishing attacks or deepfakes; and
reputational harm resulting from biases or errors in Al decision-making. Additionally, vulnerabilities
in Al models themselves, such as adversarial attacks that manipulate system outputs, further
underscore the need for robust security measures tailored to this rapidly evolving technology

landscape.

Failing to secure Al applications not only
exposes organizations to data breaches,
regulatory penalties, and reputational
damage but also undermines the trust and
confidence of users. As Al continues to
revolutionize industries, securing its adoption
is essential to ensuring its potential is

harnessed responsibly and safely.

Current application security (AppSec) strategies are not fully equipped to address the unique risks
posed by Al, particularly those associated with Large Language Models (LLMs). Traditional AppSec
tools are designed to scan for known vulnerabilities and mitigate relatively clear-cut risks, such as
SQL injection, cross-site scripting (XSS), and insecure configurations. However, Al introduces not only
these conventional risks but also a slew of novel challenges that AppSec tools currently lack visibility
into. For example, prompt injection attacks exploit the inherent flexibility of Al models, while sensitive
data disclosure risks arise from the inadvertent generation or retention of proprietary or user data.
Additionally, the concept of excessive agency—where Al systems make decisions or take actions
beyond their intended scope—poses complex risks that defy straightforward detection and
remediation using existing AppSec frameworks. These gaps highlight the urgent need for security

strategies that are specifically tailored to the dynamic and opaque nature of Al systems.

Inherent trust issues

Al systems operate on
probabilistic outputs and are
vulnerable to manipulation,
opaque decision-making,
and over-reliance by users.
These factors can lead to
data breaches, biased

results, or costly missteps.

Champion proactive
security by design

Build Al-driven
applications with security
embedded from the
ground up, rather than
relying on retroactive

safeguards.

o 7

Key Challenges In Al Security

Proactive Security Measures For Al

Emerging threats
Novel vulnerabilities
such as unbounded
consumption, model
poisoning, and vector
weaknesses pose
significant risks to Al

applications.

Recognize Al as an
untrusted user

Treat LLMs and Al agents
as potentially malicious
actors, implementing
strict input validation,
output sanitization, and

access control.

L

Risk

Governance
Assessment

LLM
Security

Stakeholder
Trust

Lagging AppSec
strategies

Traditional security
approaches often overlook
Al's unique risks, leaving
gaps in threat modeling,
incident response, and

governance.

Incorporate Al risks into
AppSec frameworks
Update security
strategies to account for
Al-specific vulnerabilities
and align with
established guidelines
like the OWASP LLM Top 10.

This guide equips Chief Security Officers (CSOs)
and security professionals with the tools and
insights needed to address Al-related risks head-
on, providing a roadmap for aligning Al security
with broader organizational goals. By prioritizing a

proactive, security-first approach to Al,

organizations can safeguard their operations and

maintain the trust of their stakeholders.

The Al landscape

As organizations increasingly integrate Al into their applications, securing these Al-driven

components has become critical. In 2025, Al is ubiquitous, powering everything from business

workflows to decision-making systems. Conversational Al, such as OpenAl's ChatGPT and Google's

Bard, is frequently embedded within customer-facing applications to enhance service interactions,

automate support, and streamline communication. These systems handle billions of user

interactions daily, underscoring their deep integration into business-critical applications. For CSOs,

understanding how and where Al components, especially conversational Al, are deployed is

essential to addressing unique vulnerabilities and ensuring a robust security posture across the

organization's digital ecosystem.

Al technologies, such as LLMs and autonomous agents, are deeply embedded into modern

applications, where they are leveraged to analyze vast datasets, automate complex tasks, and

deliver personalized user experiences. From chatbots in customer service to predictive analytics in

supply chain management, Al's adoption has revolutionized industries. However, this pervasiveness

introduces unique risks that traditional AppSec frameworks may not adequately address.

Unlike conventional software, Al operates on probabilistic outputs and is susceptible to manipulation

or misinterpretation. Despite their capabilities, Al systems lack inherent trust mechanisms. Here are

just a few key trust-related challenges to be thinking about when it comes to using Al.

Sensitive data processing

Al agents frequently process
sensitive information, such
as personal user data or
proprietary business
insights. A breach or misuse
of this data could have
catastrophic and potentially

costly consequences.

Over reliance

by end users

Users often place blind trust in
Al-generated outputs,
assuming them to be
accurate or reliable. This over-
reliance can lead to poor
decision-making, especially
when the Al produces

incorrect or biased results.

Opaque decision making
The “black-box” nature of
many Al models creates
a lack of transparency,
making it difficult for
users to reference the
source of the information,
understand how
decisions are made or

identify potential biases.

Securing Al is a critical component of strengthening your organization’s overall cybersecurity

strategy. The rapid adoption of Al has outpaced the development of comprehensive security

strategies, leaving many organizations exposed to novel threats. Here are three key steps to secure

Al across your organization's application attack surface.

Recognize Al's role in
cybersecurity
Al is no longer just an end

user tool; it is an integral
component of modern

applications and systems.

Its security must be
prioritized alongside
current AppSec strategies
to secure software and
infrastructure.

N

Integrate Al specific risks
into AppSec strategies

Current AppSec
frameworks often fail to
account for Al's unique
vulnerabilities. CSOs need
to advocate for the
inclusion of Al-specific
risks in threat modeling,
incident response plans,
and governance policies.

Champion a proactive
approach

Waiting for Al-related incidents
to occur before taking action is
not an option. CSOs must
proactively educate their teams,
invest in Al security training, and
collaborate with developers to
ensure security by design.
Reading this paper is already
putting you steps ahead.

The transformative power of Al comes with
significant responsibility —after all, Spider-Man
taught us, "with great power comes great
responsibility.” Organizations that fail to secure
their Al applications risk exposing themselves to
data breaches, regulatory penalties, and
reputational daomage. Moreover, the
trustworthiness of Al systems directly impacts
customer and user confidence and overall
business success. By addressing these
challenges head-on, CSOs can ensure that Al
serves as a driver of innovation rather than a

source of vulnerability.

Understanding Al specific risks

Securing Al applications requires a huanced understanding of their unique vulnerabilities.

Traditional AppSec approaches address some general security concerns but often overlook risks

inherent to Al. As Al systems evolve and integrate further into business processes, addressing these

risks becomes an essential component of any comprehensive security strategy. However, knowing

where to start can be challenging. While the OWASP LLM Top 10 may not encompass every potential

risk, it provides a solid foundational framework to identify key vulnerabilities, understand the risks

you need coverage for, and begin planning an effective security strategy to mitigate threats.

The OWASP LLM Top 10 serves as a

foundational framework for
addressing security concerns specific
to Al-driven applications. This evolving
guideline highlights key vulnerabilities
and provides actionable
recommendations for mitigating risks
associated with LLMs. For organizations
adopting Al, the framework offers a
baseline to ensure security
considerations are not overlooked in

design, deployment, or maintenance.

The latest 2025 list highlights a deeper understanding of
risks associated with LLMs and introduces important
updates reflecting real-world applications. It expands
on previous issues, such as broadening Denial of Service
to Unbounded Consumption, addressing resource
management, and unexpected costs in large-scale LLM
use. New entries, like Vector and Embeddings, provide
guidance on securing Retrieval Augmented Generation
(RAG) and embedding-based methods, which are now
essential practices. System Prompt Leakage addresses
vulnerabilities in prompt isolation, emphasizing the need

for better safeguards after recent exploits.

OWASP LLM Top 10 Summary

2025 Prompt Injection

Definition

Prompt injection occurs when user
inputs are crafted to manipulate an
LLM’s behavior or outputs in unintended
ways. This can include bypassing safety
protocols, injecting harmful instructions,
or causing the model to generate

unauthorized or harmful content.

Examples Potential Consequences

An attacker manipulates a Data leakage

customer service chatbot to . .
Unauthorized actions

leak confidential information or

exploits a model to generate Bypassing of safety controls

malicious commands by Generation of harmful content

embedding hidden prompts . L
)] Loss of trust in the application
within user inputs.

https://owasp.org/www-project-top-10-for-large-language-model-applications/

2025 Sensitive Information Disclosure

Definition

Sensitive information disclosure
occurs when LLMs inadvertently
expose confidential data, including
personal identifiable information
(P11, financial records, health details,
proprietary algorithms, or other
sensitive business information,
either through their outputs or by
mishandling user inputs.

2025 Supply Chain

Definition

Supply chain vulnerabilities in
LLMs arise from the reliance on
third-party pre-trained models,
training data, and deployment
platforms, which can be
manipulated or compromised to
introduce biases, security risks, or

failures in the system.

2025 Data and Model Poisoning

Definition

Data and model poisoning
involves manipulating training
data, fine-tuning datasets, or
embeddings to introduce
vulnerabilities, backdoors, biases,
or harmful behaviors into an LLM,
compromising its security,

integrity, or ethical outputs.

Examples

A model trained on unfiltered data
unintentionally generates sensitive
financial details, or an LLM
embedded in a business
application leaks proprietary

algorithms or trade secrets.

Potential Consequences

Privacy violations

Data breaches
Intellectual property theft
Reputational damage
Legal liabilities

Loss of user trust

Examples

An attacker tampers with third-party
pre-trained models to inject harmful
behavior or biases, or compromises
a fine-tuning method like LoRA to
alter the model's functionality. On-
device LLMs also increase risks of
unauthorized modifications or

tampering during deployment.

Potential Consequences

Biased or harmful outputs
System compromise
Intellectual property theft
Reduced system reliability

User harm

Examples

An attacker poisons pre-training
data to introduce toxic language
patterns, embeds a backdoor that
activates harmful behavior with a
specific input, or uses malicious
pickling to execute harmful code

when a model is loaded.

Potential Consequences

Biased or harmful outputs
Degraded model performance

Exploitation of downstream

systems

Increased risk of backdoor

activation or malicious actions

2025 Improper Output Handling

Definition

Improper output handling occurs
when outputs generated by LLMs
are insufficiently validated,
sanitized, or controlled before
being passed to downstream
systems, leading to potential
security vulnerabilities or

unintended consequences.

2025 Excessive Agency

Definition

Excessive agency arises when LLM-
based systems are granted overly
broad functionality, permissions, or
autonomy, enabling them to
perform unintended or harmful
actions in response to
manipulated, ambiguous, or

unexpected outputs.

2025 System Prompt Leakage

Definition

System prompt leakage refers to
the exposure of the system
instructions or prompts used to
guide an LLM’'s behavior, which
may inadvertently contain
sensitive information or enable

other vulnerabilities.

Examples

LLM-generated content triggers
Cross-Site Scripting (XSS) in a web
application, allows Server-Side
Request Forgery (SSRF) through
improperly sanitized URLs, or
enables remote code execution due

to privilege escalation.

Potential Consequences

Exploitation of downstream
systems

Including privilege escalation
Injection attacks (e.g., XSS,
sqQLi)

Data breaches

Unauthorized actions
Compromise of application
integrity

Examples

An LLM-enabled agent uses
excessive permissions to delete files
on a system, invokes malicious
extensions due to manipulated
prompts, or performs unauthorized
actions triggered by hallucinated
outputs or compromised peer

agents in a multi-agent system.

Potential Consequences

Data breaches

Unauthorized system

modifications

Denial of service

Loss of confidentiality,
integrity, or availability of
connected systems
Increased vulnerability to

exploitation

Examples

A system prompt includes
connection strings, API keys, or role
descriptions that, when leaked, allow
attackers to bypass authorization
checks or compromise the
application. Attackers might infer
system guardrails and restrictions by
interacting with the model and

analyzing its responses.

Potential Consequences

Unauthorized access to
sensitive data

Bypassing of security
mechanisms

Exposure of application
design details

facilitation of other attacks,
such as privilege escalation or

unauthorized system access

2025 Vector and Embedding Weaknesses

Definition

Vulnerabilities in the generation,
storage, or retrieval of vectors and
embeddings can be exploited in
systems utilizing techniques like
Retrieval Augmented Generation
(RAG) to manipulate outputs,
inject harmful content, or access

sensitive information.

2025 Misinformation

Definition

Misinformation occurs when LLMs
generate false or misleading
information that appears credible,
often due to hallucinations, biases
in training data, or incomplete

information.

2025 Unbounded Consumption

Definition

Unbounded Consumption occurs
when LLM applications allow users
to perform excessive and
uncontrolled inferences, leading
to resource depletion, economic

losses, or service disruption.

Examples

Malicious actors tamper with vector
databases to introduce harmful or
misleading embeddings, resulting in
manipulated model outputs. An
attacker reverse-engineers stored
embeddings to infer sensitive data or
exploits poorly secured vector retrieval
mechanisms to gain unauthorized

access to critical information.

Potential Consequences
Compromised data integrity
Unauthorized access to
sensitive information
Security breaches
Model manipulation leading

to harmful or inaccurate

outputsity breaches

Examples

An LLM produces a fabricated legal
precedent during a court briefing,
generates incorrect medical advice
in a healthcare application, or
provides misleading business data

in response to financial inquiries.

Potential Consequences
Security breaches
Reputational damage
Legal liability

the propagation of false
information that can influence

critical decisions or processes

Examples

A malicious actor conducts
automated requests to overload the
system, resulting in denial of service
(Dos). Excessive queries incur
significant cloud costs, or a
competitor clones a model's
behavior through repeated

inference attempts.

Potential Consequences

Service outages

Financial strain due to high

operational costs

Intellectual property theft
through model behavior

replication

degraded user experience

Legal risks for LLMs and frameworks stem from several nuanced and complex areas. For example,

open source and proprietary licensing agreements can create uncertainty around permissible

usage, especially when LLMs are built on datasets or frameworks with diverse sources and varying

license terms. If an organization uses an LLM trained on data with restrictive licenses, it could face

serious legal repercussions. If the data in training models includes copyrighted data, there may be

issues related to intellectual property rights, as even inadvertent reproduction can lead to

compliance violations. International regulations governing data usage, privacy, and Al deployment

vary widely, making it difficult for organizations to ensure compliance across regions.

Having visibility and coverage into these areas is essential to avoid legal exposure and reputational

damage. However, achieving this is challenging due to the opaque nature of Al training datasets,

the rapid evolution of licensing and regulatory landscapes, and the technical complexity of tracing

how LLMs derive and use their outputs.

Highlighted Risks

Violation of open source licenses

Many LLMs and frameworks are built on open source components with

strict licensing requirements. Failure to comply with these terms, such as

attribution, non-commercial use, or share-alike provisions, can result in

legal disputes or loss of rights to use the software.

Redistribution and
derivative works

Modifying or distributing pre-
trained models without
adhering to the licensing
terms, especially in
proprietary or open source
hybrid licenses, can breach

legal agreements.

Export and data residency
compliance

LLM frameworks may
inadvertently violate international
laws, such as export controls or
data residency requirements, by
deploying or training models on
sensitive datasets across

borders.

Unauthorized data usage

LLMs trained on datasets
containing copyrighted or
proprietary material without
proper permissions can
expose organizations to legal
challenges, particularly from

content owners.

Misrepresentation of
licensing terms

Inadequate understanding of
a framework’s licensing terms
—such as those requiring
royalties, revenue sharing, or
restrictions on commercial use
—can lead to unintended legal

or financial consequences.

Integrating LLMs into applications offers significant potential and introduces unique security

challenges detailed in the OWASP LLM Top 10. A critical consideration is the architectural positioning

of LLMs within your system. While LLMs can significantly enhance application capabilities, it's

essential to approach their integration with a security-first mindset. By treating LLMs as untrusted

users, proactively designing secure architectures, and adhering to established best practices,

organizations can effectively mitigate potential security risks associated with LLMs.

Treat LLMs as untrusted
users

Designing systems with LLMs
at their core assumes
inherent trustworthiness.
However, it's prudent to treat
LLMs as potentially malicious
users. This perspective helps
in implementing robust
control mechanisms and
safety-first architectures,
mitigating risks associated
with LLM outputs. For
instance, an LLM might
inadvertently generate
harmful commands or
disclose sensitive

information if not properly

managed.
()
IT IT IT IT
C D
C D
IT IT IT IT
()

Proactive security design

Relying solely on retrofitting security measures or external safeguards like
firewalls is insufficient. Secure LLM applications must be built with proactive
security designs from the outset. This includes implementing robust control
mechanisms and safety-first architectures to prevent unauthorized access
and misuse. For example, without proper safeguards, an LLM could be

manipulated through adversarial inputs to perform unintended actions.

Adopt and adapt best practices

Frameworks such as the OWASP Top 10 LLM Applications & Generative Al

provide evolving guidelines to help developers anticipate risks and implement
safer LLM-enabled systems. These guidelines cover areas like access risks,
data manipulation, and reputational threats, offering a comprehensive
approach to Al security. By adhering to these best practices, organizations can

enhance the resilience of their Al systems against emerging threats.

Understanding the need to treat LLMs as untrusted users is just
the beginning. Once this mindset shift is in place, the next step is
translating it into action through security-aware design
principles, practical safeguards, and governance strategies. From
architecture to implementation, each layer must work together to

reduce exposure and maintain control over Al behavior.

https://owasp.org/www-project-top-10-for-large-language-model-applications/

Mitigation and governance
of Al risks bee

Addressing Al specific security

risks requires a proactive and

comprehensive approach that Prompt Injection Attempt
integrates Al into broader security

frameworks while accounting for Sensitive DataLeak
its unique vulnerabilities. Here are
some key measures to take to Anemalous Al Behavier
ensure a robust security posture

. . Unauthorized Data Access
for Al applications.

1. Integrate Al into AppSec strategies

Al applications should be treated like any other software product during security assessments.
Incorporate Al-specific considerations into existing AppSec tools and methodologies, such as threat
modeling and secure coding practices. By leveraging these established tools, organizations can

identify and mitigate risks more effectively without reinventing their security processes.

2. Establish Al risk governance

Define clear policies that address the unique risks associated with Al systems. Assign dedicated
ownership for Al security within the organization to ensure accountability and consistent
management of security concerns. Governance frameworks should include guidelines for

evaluating risks, securing data, and ensuring compliance with evolving regulations.

3. Secure Al from the start
@\/0@ Shift Left Data Collection —> Training —> Deployment —> Maintenance

Security for Al applications must begin at the design phase. Adopting a “Shift Left” approach
encourages collaboration between developers and security teams early in the development
lifecycle. Security checkpoints should be integrated into every stage of the Al lifecycle, from data
collection and training to deployment and maintenance. This helps identify and address

vulnerabilities before they can be exploited.

4. Mitigation strategies for top risks

LLMs and other Al agents should be treated as untrusted components within the system.

Implement strict controls to verify and authorize their outputs before execution.

Follow the detailed technical mitigation strategies highlighted in the OWASP LLM Top 10 guide to

prevent issues such as prompt injection or data poisoning.

Educate developers and users about Al-specific security risks, including supply chain
vulnerabilities and sensitive information disclosure. Regular training sessions can reduce human

error and enhance organizational preparedness.

Conduct red-team testing to simulate adversarial attacks on conversational Al systems. This

approach helps uncover potential vulnerabilities and improves resilience against real-world threats.

Organizations must ensure compliance with the licensing terms of Al models and frameworks to
avoid legal and financial repercussions. Use a code scanning tool to conduct thorough license
reviews, ensuring that usage adheres to open source or proprietary requirements, and

maintaining documentation of all model and framework licenses.

5. Adopt frameworks and guidelines

Leverage existing frameworks, such as the OWASP LLM Top 10, to help your teams understand and
address known vulnerabilities like improper output handling, excessive agency, and misinformation.
Continuously adapt security protocols to align with evolving best practices and emerging risks.

Ensure Al-specific guidelines are fully integrated into the organization’s broader AppSec strategies.

6. Continuous monitoring and auditing

Automate monitoring tools to track Al
systems for unusual behaviors, such as
unbounded consumption or unauthorized
data access. Conduct regular audits of the
Al lifecycle, including data integrity checks,
model updates, and permission reviews, to

promptly address new risks.

https://genai.owasp.org/resource/owasp-top-10-for-llm-applications-2025/

7. Develop incident response plans

Prepare for Al-specific incidents by establishing a response plan tailored to risks like prompt
injections or misuse of Al capabilities. Regularly test these plans through simulations to ensure the

organization can respond quickly and effectively during a security event.

By integrating these measures into AppSec strategies and fostering a culture of security-by-design,
organizations can proactively address the unique challenges Al systems pose. Treating Al as an

untrusted user, establishing governance frameworks, and adopting technical safeguards are critical
steps in building resilient Al applications. As Al becomes increasingly integral to business operations,

embedding security into its foundation is not optional—it is essential.

2 2

Chief Security Officers are pivotal in guiding their organizations to secure Al

systems effectively. By taking a structured approach, CSOs can ensure Al security

becomes an integrated component of the broader cybersecurity strategy.

>

Assessment and visibility Action plan
Conduct a gap analysis to evaluate the Prioritize risks based on their potential impact
organization’s current Al security practices and likelihood, addressing critical
against industry standards and best practices. vulnerabilities first.
Develop an inventory of Al applications and Implement quick wins such as securing data
systems, identifying how they are integrated inputs, reviewing output validation processes,
into business processes and where and ensuring compliance with Al model
vulnerabilities may exist. license terms.

Build the team Measure progress
Define roles and responsibilities for Al security, Establish Key Performance Indicators (KPIs) to
ensuring clear ownership across teams. track improvements in Al security, such as

reductions in incidents, faster response times, or
Allocate the necessary budget and resources to
. enhanced compliance rates.
support Al-specific risk management efforts,
including training, tools, and personnel. Regularly review and update Al security policies
to reflect evolving risks, emerging technologies,

and industry developments.

By following these steps, CSOs can establish a strong foundation for mitigating Al-specific risks and

ensuring their organizations are prepared to handle the challenges of securing advanced Al systems.

@ Mend.io

Find out more about securing Al powered
applications in your organization.

@ @ © 2025 mend.io | All Rights Reserved

https://www.mend.io/demo/?utm_source=whitepaper&utm_medium=cta&utm_content=from_reactive_to_effective
https://www.linkedin.com/company/mend-io/
https://www.facebook.com/mendappsec
https://twitter.com/mend_io

