@

Teaining
data

(w>
Oivect promet

mo.nieularﬁon 72,

~ Context
window
explortaction

Pompt injection
aHacks

“Toxic 0¢ biased
outputs

Al Red Teaming

Practical Guide

@Mend.io

A Practical Guide for Security Professionals and Al Teams

Al red teaming has become crucial for identifying security and behavioral risks before bad
actors can exploit them. The diverse elements of modern Al systems, including models, RAG
pipelines, and autonomous agents, create unpredictable failure modes that traditional AppSec
tools cannot detect.

Red teaming intentionally provokes Al systems to exhibit undesired behaviors, surfacing
behavioral risks and adversarial failures beyond traditional security vulnerabilities. As Al remains
a young, fast-moving space, red teaming has proven to be one of the most reliable methods for
testing Al boundaries and uncovering hidden risks before and after deployment.

This comprehensive guide provides security professionals and software development leaders
with the frameworks, tools, and strategies needed to build effective Al red teaming programs
that actually work.

, but only 13% feel fully ready to keep

it safe.

Manual testing alone cannot scale with modern Al deployment velocity.
Al introduces new and unique attack surfaces.

Al red teaming platforms like can cut Al risk identification and remediation time
by up to 80%.
External pressure from regulations such as the EU Al Act or governmental guidance like
NIST’s Al Risk Management Framework.

J Increase expectations from customers who need to keep their Pl and data secure.

Kick-off an Al Red Teaming program in days, growing to continuous coverage without

stalling delivery, by using the S-Curve maturity model to identify your starting point.

Al red teaming is the practice of "thinking like an attacker” to systematically test Al systems for
vulnerabilities, biases, and dangerous behaviors. Unlike standard penetration testing that targets
network and application vulnerabilities, Al red teaming focuses on behavioral security - examining
how Al systems can be manipulated through inputs, context, and interactions.

https://www.unite.ai/the-state-of-ai-security-in-2025-key-insights-from-the-cisco-report/
https://www.mend.io/ai-red-teaming/

Traditional security testing assumes deterministic behavior - the same input produces the same
output. Al systems are fundamentally different:

Traditional Software:

Input Code Logic Output

Probabilistic Output

Predictable results

This means attackers can manipulate Al systems through:

Prompt injection

malicious instructions

embedded in
user input

Traditional Tool

SAST

Traditional Pen

Testing

Input Model Reasoning

Emergent, contextual behavior

Context manipulation Multi-turn exploitation Tool misuse
poisoning the Al's building attack tricking Al agents
understanding of context across into abusing

its environment multiple interactions their capabilities

What It Catches

Code vulnerabilities, SAST
enables developers to detect
security flaws or weaknesses in
their custom source code

DAST identifies runtime
problems, server configuration
and authentication problems, as
well as flaws that are only visible
when a known user logs in

Infrastructure and application
security

What It Misses in Al

Prompt injection, model behavior
manipulation

Al-specific attacks like jailbreaking,
context leakage

Emergent Al behaviors, multi-
modal attacks

https://www.mend.io/blog/sast-static-application-security-testing/#what-is-sast
https://www.mend.io/blog/dast-dynamic-application-security-testing/
https://www.mend.io/blog/penetration-testing/
https://www.mend.io/blog/penetration-testing/

Before diving into red teaming methodology, it's crucial to understand the types of Al systems that
require specialized testing. Each introduces unique attack surfaces and failure modes.

What they are: Chatbots, virtual assistants, language translation, automatic categorization, decision
makers, and interfaces where LLMs respond to natural language prompts.

Examples: Customer support agents, coding assistants, internal Q&A systems. When using a vendor,

you may not even know a feature is using an LLM, it's important to ask third-party suppliers if there is

LLM us in the back-end.

Direct
prompt manipulation
users can inject
malicious instructions

Prompt
injection attacks
that subvert the

model's instructions

Key Attack Surfaces:
Context Output
window exploitation post-processing
manipulating if LLM output feeds
conversation history other systems

Critical Vulnerabilities:

Toxic or Sensitive
biased outputs data leakage
despite built-in from training data or

safeguards user conversations

Training
data leakage
models may reveal
training information

Refusal
bypasses
("jailbreaking”)
that circumvent
safety measures

What they are: Autonomous Al systems that can plan, use tools, and take actions to accomplish goals.

Examples: AutoGPT-style systems, Al task agents, coordinated agent networks

Autonomy Spectrum:
Simple Chatbot Tool-Using Agent Planning Agent Multi-Agent System
Low risk Moderate risk High risk Critical risk

Advanced Attack Surfaces:

Permission escalation - agents gaining capabilities beyond intended scope
Tool misuse - manipulating agents to abuse file systems, APIs, or internet access
Orchestration flaws - bugs in multi-agent coordination and planning loops
Memory manipulation - poisoning agent state to alter future decisions

Inter-agent attacks - compromised agents affecting others (Al supply chain attacks)

Real-World Risk Scenario: An Al agent with file system access could be prompted to execute rm -rf |
(destructive deletion) if proper safeguards aren't in place. Or one compromised agent in a network
could feed malicious information to others, creating cascading failures.

What they are: Systems combining LLMs with external data sources, where user queries retrieve
relevant documents before the LLM generates responses.

Examples: Internal knowledge bases, document Q&A systems, research assistants

Architecture Flow:

User Query Document Retrieval Context Assembly LLM Generation Response

Attack vectors at each stage of the pipeline

Unique Attack Surfaces:

Knowledge base poisoning - injecting malicious documents
* Retrieval manipulation - crafting queries to access unauthorized data
 Context injection - embedding attacks in retrieved documents

 Cross-document contamination - using one document to affect others

The EcholLeak Case Study: This real vulnerability in Microsoft 365 Copilot
demonstrates RAG-specific risks. Researchers crafted a seemingly benign email with
hidden markdown instructions. When Copilot's RAG system processed emails in the
background, it followed those hidden prompts and exfiltrated confidential data to an

external server - no user action required.

This zero-click exploit combined web vulnerabilities with Al prompt manipulation,

showing how Al's contextual understanding can be weaponized against itself.

Are you using Al to develop applications? Then you probably need Al red teaming. At minimum, you
need to gauge where you are, your risk tolerance, and if you need to take action. Use this
assessment framework to determine your organization's need for Al red teaming capabilities.

Start by mapping all applications leveraging Al models, to ensure you understand your full level of
risk exposure and begin to map how they behave:

High-risk indicators:

Customer-facing Al applications (chatbots, assistants, recommendation engines)
Al systems processing sensitive data (documents, code, personal information)
Autonomous Al making decisions or taking actions automatically

Complex, integrated Al workflows with multiple components

Questions to ask:

Are LLMs directly exposed to untrusted user inputs?
Do Al outputs drive automated actions or decisions?
How many Al instances exist across your organization (including "shadow Al")?

What level of autonomy do your Al systems have?

If you discover even one high-risk Al use case, red teaming becomes essential.

Consider your worst-case scenarios:
Data breach: Could prompt manipulation cause your Al to leak database contents?
Reputational damage: Could attackers trigger harmful outputs that damage your brand?
Regulatory violations: Could Al failures result in GDPR fines or Al Act non-compliance?
Operational disruption: Could compromised Al systems affect business operations?

Safety risks: In critical sectors, could Al failures cause physical harm?

If these scenarios carry serious business consequences, proactive red teaming is insurance
against disaster.

The regulatory landscape increasingly demands Al testing:
EU Al Act proposes conformity assessments for high-risk Al systems
NIST Al Risk Management Framework emphasizes testing and assurance
Enterprise customers expect Al security evidence, similar to pen-test reports

Industry standards emerging across finance, healthcare, and other regulated sectors

Even without legal requirements, demonstrating Al security due diligence provides competitive
advantage and builds stakeholder trust.

Ask honestly: does your security team understand Al well enough to secure it effectively? Most don't.
Al red teaming brings specialized expertise to bear on your Al deployments, filling critical knowledge
gaps until your organization develops internal Al security capabilities.

Organizations typically evolve through predictable stages in their Al red teaming journey. Our S-Curve
Maturity Model demonstrates how each level delivers exponentially greater security effectiveness
through increased automation and organizational integration.

The S-curve illustrates a crucial insight: initial investments in Al red teaming yield modest
improvements, but systematic scaling delivers accelerating returns in risk reduction.

1.0

0.8

0.6

0.4

0.2

0.0

Red Teaming Effectiveness | Coverage

Maturity
Level

Level O:
Unaware

Level 1:
Basic

Level 2:
Developing

Level 3:
Advanced

Al Red Teaming Maturity S-Curve (Levels 0-3)

Level 3:
Automated & Continuous
Level 2:
- Tool Assisted
- Level 1
Ad Hoc & Manual
[Level 0:
No Al Red.Teaming
1 1 J
0 1 2 3
Maturity Level
Characteristics Testing Organizational What This
Approach Integration Looks Like
No formal Al security = None or Al security "we'll worry

testing; Ad-hoc or
reactive security
measures; Limited Al
risk awareness

Manual testing by
security experts;
Sporadic testing
schedule; Focus
on obvious
vulnerabilities

Regular testing
cycles; Some
automation tools;
Cross-functional
involvement

Continuous
automated testing;
Custom test
development;
Integrated security
workflows

crisis-driven testing

Expert-led manual
red teaming

Combination

of manual
expertise and
basic automation

Fully automated
with human
oversight

handled reactively

Security team
drives all Al testing

Al security
integrated into
development
process

Al security
embedded
throughout
organization

about Al security
when something
goes wrong"

Monthly manual
testing sessions by
1-2 security experts

Quarterly
comprehensive
assessments
with developer
feedback loops

Daily automated
scans with instant
developer feedback
and custom test
creation

Characteristics: Most organizations start here, often unknowingly. They may have robust traditional
security programs but haven't extended security thinking to Al systems. Al deployments happen
organically without security review, and the organization lacks Al-specific threat models or risk frameworks.

Assuming traditional
security tools cover
Al risks

Conduct Al system
inventory across
the organization

Common Blind Spots:

No dedicated Al
security expertise
or training

Treating Al systems
as "just another
application”

Immediate Actions:

Assess current Al
deployments against
basic security criteria

Establish Al security
awareness training for
security and
development teams

Security teams
unaware of Al
deployment velocity

Define Al-specific
incident response
procedures

Characteristics: Organizations recognize Al security risks and begin manual testing efforts. Usually
driven by security experts who learn Al red teaming techniques through trial and error. Testing
happens sporadically, often triggered by new deployments or incidents.

Manual prompt
injection testing

Cannot scale with Al
deployment velocity

Document all
testing procedures
for consistency

Testing Capabilities:

Basic jailbreaking Simple data
attempts leakage tests
Limitations:
Relies heavily on Inconsistent test
individual expertise coverage across systems

Best Practices For Level 1:

Create reusable test Establish regular testing
case libraries schedules regardless of
deployment cycles

Ad-hoc model
behavior analysis

Long gaps between
testing cycles

Build relationships with
Al development teams
for better collaboration

Characteristics: Organizations

implement

regular testing cycles and begin

incorporating

automation tools. Cross-functional teams collaborate on Al security, and testing becomes
integrated into development workflows rather than being purely reactive.

Scheduled testing
cycles aligned with
development sprints

Dedicated Al security
team members
or specialization

Balancing manual
expertise with
automation efficiency

Enhanced Capabilities:

Basic automated
testing for common
vulnerability patterns

Standardized reporting
and remediation
tracking

Key Success Factors:

Metrics and KPIs for Al
security effectiveness

Regular training
updates as the threat
landscape evolves

Common Progression Challenges:

Maintaining test
coverage as Al systems
complexity increases

Keeping pace with
rapidly evolving Al
attack techniques

Integration with
existing security tools
and workflows

Executive support for
Al security initiatives

Resource allocation
between traditional
security and Al security

Characteristics: Organizations achieve continuous, automated Al security testing with human

oversight for complex scenarios. Al security is embedded throughout the development lifecycle, with
instant feedback loops and custom test development capabilities.

Continuous monitoring
of Al system behavior
in production

80% reduction
in vulnerability
remediation time

Sophisticated
automation platforms
with extensive
test libraries

Organizations using

manual approaches.

Advanced Capabilities:

Custom test
development for
domain-specific risks

Integration with
CI/CD pipelines for
shift-left security

Organizational Benefits:

Comprehensive
coverage of Al
attack vectors

Proactive identification
of emerging threats

Technology Requirements:

Integration APIs
for seamless
workflow embedding

Advanced reporting
and analytics
capabilities

Advanced analytics for
trend identification and
risk prediction

Scalable security
that grows with
Al deployment

Custom test
development
environments

achieve Level 3 maturity through comprehensive
automated testing, enabling continuous security validation without the resource overhead of purely

https://www.mend.io/ai-red-teaming/

Implementing Al red teaming is as much about process and people as it is about attacking
technology. It requires a blend of traditional security testing methodology and new, Al-specific
techniques. Here's how to get started, from forming the team to conducting exercises and
integrating results

Every successful red team engagement starts with clear goals. Ask: What are we trying to protect,
and what kinds of failures are we most concerned about? In Al systems, objectives could include:

Test for unauthorized data disclosure — e.g., “Can we trick the Al into revealing a user's

private info or internal data?”

Test for harmful content generation — e.g, "Can we induce the model to output hate

speech, self-harm advice, or disinformation, despite its safeguards?”

Test robustness of guardrails — e.g, "Can we bypass the content filter or make the Al

perform actions it should be restricted from doing?"

Test resilience of integrated systems — e.g, “Can a malicious input cause the Al to corrupt

a database entry or perform an unintended transaction?”

Assess agent autonomy risks — e.g, ‘If given a broad goal, will the agent try something

destructive or escalate privileges?”

Clarity is key: a vague goal like "see if it can be hacked” is not helpful. Instead, break it down. CSA
suggests categorizing objectives such as Content Generation testing, Implementation controls,
Agentic Al risks, Runtime behaviors, etc. For instance:

Content Generation Testing: Can the model produce outputs it shouldn't (like disallowed content)?
If your LLM is not supposed to give coding exploits or graphic violence, try to get it to do so.

Implementation Controls: Examine system-level defenses: input validation, prompt filtering, rate
limiting, authentication. Is there a way around them? (E.g., if the Al is behind an API key, can we use
one key to impact another's session? Or bypass a monitoring check?)

Agentic Al Risks: If your Al can use tools or make decisions, test those pathways. For example, if it
integrates with a payment system, attempt transactions outside normal bounds.

Runtime Behaviors: Look at downstream effects. If the Al's decision goes into a database or
triggers an email, what's the impact? Could we make it spam the company or corrupt records?

Documenting such objectives upfront helps focus the red team's efforts and later measure
success (did we find something for each objective?).

Additionally, threat modeling upfront is highly recommended. OWASP's guide suggests performing
Al-specific threat modeling to systematically map out the attack surface: identify entry points (user
inputs, integrated APIs, training data sources), trust boundaries, and potential adversaries. Include
both the "adversarial perspective and that of the impacted user” — meaning consider how an
attacker might abuse the Al and how a normal user might be harmed by Al malfunctions.

Scope should also clarify in-bounds vs out-of-bounds for the test. For example, is the red team
allowed to modify training data to see if poisoning is possible? (In a prod system, that might be out
of scope if they can't realistically alter the training set.) Are they allowed to use custom model
queries or only go through the public API? Make these explicit. Also decide if testing will be black-box
(no source code, simulating an external attacker) or white-box (with internal knowledge, simulating
an insider or aiding testers in finding deeper issues). Al red teaming can benefit from white-box
insights (like knowing the prompt templates or model architecture) to craft more targeted attacks.

Finally, be sure to include testing of the "entire application stack” around the Al. This means the
scope may involve frontend clients, network interfaces, data stores, etc, not just the Al model in
isolation. For example, if red teaming a chatbot, part of scope might be testing the web Ul for XSS if
the chatbot's answer is rendered in HTML (could the chatbot output a <script> tag?). These hybrid
exploits are realistic — attackers look for any weakness in the end-to-end system.

Al red teaming is inherently cross-disciplinary. Your team might include:

AI/ML Experts: People who understand how the model was built, how it behaves, its training data,
etc. They can identify likely weak points (e.g., "this GPT-3 model was fine-tuned on our data, which
might cause it to leak certain formats of info if prompted”).

Security Testers (Red Teamers/Pentesters): Folks who have the attacker mindset and experience in
exploitation. They might not know transformer architecture, but they know how to fuzz inputs, find
logic gaps, and persist until they succeed. They bring creativity.

Domain Experts: Depending on use case, domain knowledge helps. E.g,, if red teaming a medical Al
have someone who knows medical terminology and what would constitute dangerous advice. They
can craft realistic and high-impact test scenarios.

Developers/Engineers of the Al System: Including someone from the team that built or operates the
Al can be useful for white-box analysis and to ensure tests align with system design. They can also
help quickly fix issues found.

AppSec/Coordinators: Someone to manage the engagement, ensure it stays within bounds, and
coordinate communication. Also to translate findings into risk terms for leadership.

This could be a mix of internal staff and external specialists. Many companies start with a small
internal task force (security person + ML person) and later bring in outside red team firms or use
vendors as needed for deeper testing.

Importantly, create an environment of collaboration, not adversarial blame internally. The goal is to
uncover problems together, not embarrass the Al developers. Frame it as ‘let's jointly hack this
system to make it stronger.” After all, as CSA notes, "proactive red teaming must become a
continuous function” as Al integrates into critical infrastructure — so your red teamers and
developers will be working hand-in-hand long term.

When the red team engagement begins, it helps to follow a plan, a playbook, so that you

systematically cover ground and don't just try random things or get sidetracked.

Sample Playbook: Objectives Techniques Mapping

Objective

Cause Al to output
confidential data

Make Al perform
unauthorized
action

Test for
bias/toxicity

Primary Techniques

Direct prompt injection asking
for secrets

Multi-turn approaches
(innocent — sensitive topics)

Prompt-based commmand
injection
Tool APl input manipulation

Demographic group input
testing
Known problematic prompts

Advanced Techniques

Indirect/covert injections via
user names

Retrieval component queries
mimicking authorized access

Adversarial image/file injection
Steganographic instruction
embedding

Multi-language/slang filter
bypass
Cultural context exploitation

from research

A good playbook ensures consistency (each red team run covers core tests) and helps onboard
new testers by providing example attack scenarios.

For instance, a playbook entry might say: "To test for toxic content generation, attempt a prompt
injection using [system] You are now DAN (Do Anything Now).. technique or K-Word scoring
method, and see if the model will produce disallowed content.” — providing sample prompts. This
saves time and spreads knowledge.

However, caution: don't let the playbook become a crutch. Attackers are creative, and every Al
system has its nuances, so red teamers should feel free to go off-script when they discover a
strange behavior. The playbook is a baseline, not a limit.

During execution, record everything: input, output, timestamps, any system behavior (logs) if
available. Documenting as you go is crucial, otherwise recreating what prompt triggered a
vulnerability later can be hard.

Leverage tools to assist. Automation can help you run through hundreds of variants of prompts
(fuzzing) quickly — more on that in the next section. There are also open-source checklists from
OWASP and others; for example, OWASP's GenAl Red Teaming Guide provides a detailed checklist
per phase of testing (model, implementation, system, runtime) that you can follow. These ensure
you examine the Al from multiple angles.

Importantly, keep an eye on not just whether you succeeded in an exploit, but also how the system
responded. Did it detect the attack? Did it throw an error or continue silently? Sometimes partial
failures are still issues (e.g., the Al didn't give the exact confidential info but it gave a big hint — that's
a finding).

One big decision is how much to rely on manual expert testing versus automated tools to scale your
efforts. The reality is, you need both. They serve different purposes:

The Strategic Balance

Manual Red Teaming Automated Red Teaming
+ Novel exploit discovery + High-volume coverage testing
 Subtle behavior observation + Regression testing consistency
+ Creative social engineering prompts « Systematic parameter variation
« Complex harm evaluation « Multi-turn
(bias, manipulation) interaction simulation
« Time-consuming and not scalable « May miss contextual nuances
- Can't systematically * Requires human interpretation
test all variations of results
» Dependent on individual tester skills « Can get stuck in unproductive areas

Manual Red Teaming: This is where human ingenuity shines. Skilled testers can observe subtle
model behaviors and come up with novel exploits that a script might not conceive. Manual testing is
crucial for discovering the unknown unknowns — those weird corner-case failures or creative social
engineering-style prompts. It's also necessary for evaluating complex harms like bias or
psychological manipulation, where human judgment is needed to recognize a problematic output.
However, manual testing is time-consuming and not repeatable at scale. It might catch the big fish,
but could miss systematically checking every possible input format or parameter variation.

Automated Red Teaming: Automation can dramatically increase coverage and efficiency. For
example, using fuzzing tools to generate hundreds of variations of a prompt and test them all can
find simple attacks that a human might overlook or not have time for. Automation is great for
regression testing — once you fix issues, you can re-run an automated test suite to ensure they stay
fixed release after release. It provides a repeatable baseline for testing model updates, catches low-
hanging fruit quickly, and can simulate attacker techniques like exhaustive token permutations or
multi-turn interactions at speeds humans can't match.

However, automation is not a silver bullet. Some automated red teaming approaches, like using
an LLM to attack another LLM, can become an art of their own — you might spend more effort
tuning the attacking Al than manually finding issues. Also, automated scripts might get stuck in
areas a human would know to skip, or they might not understand context or nuance. And they
can't easily judge why a certain output is harmful without human help, for example, determining
if a subtle bias is present often needs human eyes.

The consensus in lessons learned: use automation to augment, not replace, human red
teamers. Automation handles breadth; humans handle depth. One recommended model is
Level-up Automation:

The Level-Up Automation Approach

Phase 1: Manual Foundation

Start manual Understand system Document successful attacks

Phase 2: Selective Automation

Automate discovered techniques Test variants across endpoints/languages

Phase 3: Guided Manual Deep-Dive

Human analysis of automation results Deeper investigation of anomalies

Phase 4: Continuous Integration

Automated regression testing + Scheduled manual exercises

In practical terms, you might use a combination of:

Practical Tool Categories

Tool Type

Scripting & Fuzzing

Al Attack
Frameworks

Monitoring &
Sandboxing

No-Code Platforms

Calibrate your program to use tools for what they're good at:

Purpose

APl payload testing

Orchestrated testing

Production anomaly detection

Accessible team testing

Example Use

Python scripts with prompt
variations, encoding tests

PyRIT for systematic objective-
based attacks

Staging environment
continuous testing

Template-based tests ("‘prompt
injection” one-click)

Use automation to catch easy issues fast, repeatedly, and at scale.

Use human red teaming to uncover complex, contextual, or novel issues.

Foster collaboration between the two - e.g, have humans review automated findings (to

eliminate false positives and prioritize) and have tools run some human-designed attacks

(to extend their reach)

A practical tip is to maintain a library of test cases (prompts, scenarios) discovered by manual
red teaming and then automate that library to run after every major update to the Al system.
This ensures known issues don't reappear and builds regression security testing into your

pipeline, akin to unit tests.

Regardless of maturity level, there are practical steps and best practices every organization can
follow when implementing Al Red Teaming. Below we provide guidance distilled from industry
sources and real-world experience:

Don't reinvent the wheel. Leverage community knowledge:

The Strategic Balance

Framework Best For Key Focus Areas

All Al systems Prompt injection, data leakage,
insecure plugins

Phased testing: model —
implementation — system — runtime

MITRE ATLAS ML/Al threat modeling Data poisoning, model evasion,
model theft

Comprehensive attack taxonomy

CSA Agentic Autonomous agents Agent Control Hijacking,
Al Guide Checker-Out-of-Loop failures

Multi-agent security scenarios

Regulatory Compliance requirements Bias/fairness testing,
Guidelines industry-specific standards

OWASP GenAl Red Teaming Guide and LLM Top 10: These provide a framework for what to test and
how. The OWASP Top 10 for Large Language Model apps highlights common threats (prompt
injection, data leakage, insecure plugin use, etc.) which can serve as a starting checklist: are you
testing for each of those? The GenAl Red Teaming Guide offers a Blueprint — a phased approach
(plonning, execution, post—engogement) and phases of evaluation (model, implementation,
system, runtime). Use these to structure your program. For example, ensure you do model
evaluation (e.g, test the raw model for prompt attacks), implementation testing (test the integrated
app around the model), system evaluation (broader system security like auth and network), and
runtime analysis (monitoring in a live-like environment).

https://www.mend.io/blog/2025-owasp-top-10-for-llm-applications-a-quick-guide/
https://www.mend.io/blog/2025-owasp-top-10-for-llm-applications-a-quick-guide/
https://www.mend.io/blog/2025-owasp-top-10-for-llm-applications-a-quick-guide/

MITRE ATLAS & Threat Models: MITRE's ATLAS is like ATT&CK for Al — it enumerates tactics and
techniques for attacking ML. Use such resources in threat modeling to ensure you consider things
like data poisoning, model evasion attacks, model theft, etc, if relevant. Not all will apply, but it's
comprehensive.

CSA Agentic Al Guide: If you have autonomous agents, CSA's guide (and summaries like Adversa's
10 insights) detail categories of risks and how to test them. For instance, test for Agent Control
Hijacking by simulating spoofed commands or tokens, or Checker-Out-of-Loop failures by disabling
oversight mechanisms and seeing if the agent runs wild. Use these scenario ideas to enrich your
playbook with agent-specific tests.

Regulatory Guidelines: If applicable, follow any testing requirements from regulators or standards
(some might require testing bias or fairness explicitly, for example).

Frameworks ensure you don't forget major areas. One team reported how OWASP's guide helped
them cover "security, safety, and trust” perspectives, categorizing risks into those buckets to make
sure they weren't solely focused on just security but also user harms and misinformation. That
holistic view is critical in Al contexts.

When Red Teaming, especially if you're testing production or a system with live data, take precautions:

Essential Safety Checklist

Testing Environment Safety:
Use staging environment replica when possible
Point Al to copy of database, not production data
Throttle outbound actions (emails, transactions) into sandbox
Set up stop conditions for autonomous agent testing
Monitor system metrics during testing

Data and Ethics:
Ensure red team authorized to view any real data used
Have NDAs/agreements in place as needed
Sanitize or tokenize sensitive data when possible
Define ethical limits - no destructive actions on production

Keep findings confidential and secure

Use a Staging Environment if at all possible. Ideally, have a full replica of the Al system where you
can attack freely without risking real user data or uptime. For example, point the Al to a copy of the
database, or throttle its outbound actions (so if it tries to send emails or make transactions, those
are caught in a sandbox).

Data Handling: If using real data in tests (say, you want to see if the Al will leak actual confidential
info), ensure the red team is authorized to view that data, and have NDAs or agreements as needed.
Alternatively, sanitize or tokenize sensitive data when possible.

Ethical Limits: Red teamers should know what not to do, even in a test. For instance, don't actually
carry out a destructive action on production systems ("we got the Al to tell us how to delete the
database and then we did it" - too fart). Also, be mindful of not exposing any findings or data publicly.

Stop Conditions: Autonomous agents could get out of hand. Set up stop conditions or human
oversight during testing of agents. E.g., if an agent tries to perform a high-risk action in staging, have
a human approve it before letting it proceed, or simulate the effect rather than doing it.

Monitoring During Tests: Keep an eye on system metrics. If your attacks inadvertently cause a
denial of service or heavy load, you might need to pause. Also monitor the Al's outputs to catch if it
does something truly unexpected (the red team might discover an unrelated bug — e.g, an Al
deletion of data — you'd want to catch that immediately).

Documenting all results is as important as finding them. For each finding, capture:

The inputs (prompts, The output or Why it's a problem — the Suggested mitigation
sequences of steps, or behavior observed impact or what could or fix (if known).

data modifications) (with screenshots or happen if a malicious

that led to the issue. logs if useful). user exploited this.

It's vital to include enough detail that developers or a third party can reproduce the issue. If the Al
gave a one-off strange response, provide the random seed or the exact model version if possible.
Many Al issues can be transient or data-dependent, so reproducibility is gold.

When sharing results, tailor to the audience:

Audience-Tailored Reporting Strategy

Audience What They Want How to Present
Engineering/ Technical debugging details « Exact prompts and system logs
Developers - Specific fix recommendations

+ Reproduction steps with
environment details

Management/ Business risk assessment « Executive summary with
Ciso severity levels

+ Business impact mapping

« Remediation timeline and
resource needs

Al Governance/ Policy and process implications + Sanitized findings for
Risk Teams organizational learning

« Broader security pattern analysis

« Process improvement
recommendations

Engineering/Developers: Want the nitty-gritty. Provide them the prompts and logs so they can
debug. Also provide recommendations - e.g., "Add a check to strip markdown from emails before
the Al sees them" or "Update the prompt to explicitly disallow XYZ." Red teaming isn't just about
breaking; it's about helping build defenses. Remember that every prompt and test must be done
with the purpose of having a recommendation tied to how to prevent that attack in the future.
Otherwise it's a waste of everyone's time.

Management/CISO: Want the big picture and risk assessment. Summarize how many issues found,
their severities, and what the plan is to fix. Map them to business impact (e.g., "We found a way to
access customer data - this is high risk, potential data breach scenario, will be fixed in 2 weeks").

Across Teams: If you have an Al governance or risk committee, share results there too. It might
influence policy (like "'maybe we should not allow this Al to connect to the internet until we solve
these issues”). Also consider sharing sanitized findings within the organization to educate others (for
example, show developers examples of prompt injection so they realize why certain secure coding
practices are needed).

After documenting, track the fixes. Treat these findings as you would vulnerabilities from a pen-test:
assign owners, implement changes, verify fixes (perhaps the red team re-tests or automation does),
and close the loop by updating any relevant documentation or training.

And don't forget to celebrate improvements — if your second red team engagement finds fewer
critical issues than the first, that's progress! It means the feedback loop is working. Highlight that to
reinforce the value of this whole exercise.

To truly scale and sustain, Al red teaming cannot be a one-off annual exercise; it should be woven
into your development and deployment lifecycle:

Development Lifecycle Integration

Development Phase

Design & Planning

Development

(shift Left)

Pre-Deployment

Production

Post-Incident

Red Teaming Activities

Al feature threat modeling

Abuse case development
alongside use cases

Al security reviews
Developer security training

Secure prompt design guidelines

Automated attack test suites
Manual security validation

Release gate requirements

Runtime anomaly detection
User reporting channels

Continuous monitoring

Model retraining assessment

Policy updates

Practical Examples

"When adding Al agent plugin, ask
'how could this be abused?’ early”

‘Require Al security review for new Al
projects, like code security review"

"Run known attack patterns, verify
nothing egregious emerges
before prod"

"Flag if chatbot outputs 100KB text or
unusual database query patterns”

"If model leaks training phrases,
review dataset and model

- Process improvements parameters

During Development (Shift Left): Security and Al teams should be involved in design. Threat model
new features involving Al and write abuse cases (just like use cases) that developers consider. For
example, when adding a new plugin to an Al agent, ask "how could this be abused?" early and
perhaps build in restrictions from the get-go. Some companies have started requiring an "Al
security review" for any new Al project, similar to a code security review.

Pre-Deployment Testing: Make Al red teaming (even if light) a gate before releasing an Al feature.
This could be as simple as running an automated test suite of known attacks and verifying nothing
egregious comes out. Or a manual check by a security engineer. It's analogous to running dynamic
analysis on a web app before pushing to prod.

Continuous Monitoring in Production: While not classical red teaming, having runtime protections is
crucial. For instance, implement anomaly detection on Al outputs — if your chatbot suddenly outputs
100KB of text or starts repeating certain patterns that are unusual, flag it. Or if it's connected to a
database, monitor for unusual queries triggered by it. Some attacks might slip through testing, so
monitoring can catch them. Also provide an easy channel for users or staff to report Al misbehavior
they observe, and feed that back to the red team to investigate.

Feedback Loop to Training: A unique aspect of Al is that sometimes the fix might involve retraining
or fine-tuning the model, not just code changes. If red teaming finds the model is repeatedly biased
or leaking a certain training phrase, you might need to adjust your training data or apply
reinforcement learning with human feedback (RLHF) to mitigate it. Establish a process with your
data science team so that red team findings (e.g, "model often reveals snippet 'XYZ' when asked
about ABC") result in a review of the dataset or model parameters.

Policy and Controls Updates: Incorporate lessons into policies: e.g, update your prompt design
guidelines for developers ("Always include a concluding user instruction that says to refuse sensitive
info requests”), or introduce a rule that "Al systems that produce code must run output through a static
analyzer before execution” if that addresses a found risk. Also update incident response plans to include
Al scenarios (what if someone does successfully exploit the Al — how do we contain and respond?).

As mentioned, reaching the highest maturity often means adopting specialized platforms that
make Al red teaming easier and scalable. These tools are evolving quickly. Benefits of such
platforms (like and others) include:

The Strategic Balance

Platform Benefits

Ease of Use: Simple Ul/config setup for
non-coders

Attack Library: Out-of-box jailbreaks
and malicious prompts

Automation: Scheduled testing and
Cl/CD integration

Collaboration: Dashboards, reporting,
JIRA integration

Scalability: Cloud compute for
thousands of test queries

Potential Trade-offs

Cost: Platform licensing and
subscription fees

Flexibility: Less customizable than
hand-crafted approaches

Dependency: Reliance on vendor
updates and support

Learning Curve: Team needs to adapt
to new tooling

Validation Required: Still need human
oversight of results

Ease of Use: They offer a user interface or simple config (sometimes YAML or forms) to set up attack
scenarios. This means even non-coders (or busy security teams) can run sophisticated Al tests. For
example, you might select "Test for Data Leakage” and the platform will automatically try a suite of
prompts and techniques.

Scenarios Library: Vendors often encode knowledge from many engagements — common
jailbreaks, malicious prompts, etc. — so you get a library of attacks out-of-the-box. This saves your
team from having to discover every trick themselves or keep up with all new research.

https://www.mend.io/ai-red-teaming/

Automation & Scheduling: You can schedule tests to run nightly or integrate them into CI/CD (so
every new build triggers a test). Some tools can even hook into chat interfaces or APIs continuously.

Collaboration and Reporting: These platforms typically provide dashboards, vulnerability tracking,
and integration with JIRA or other dev tools, making that feedback loop easier. They may also
provide metrics (like "toxicity score” of outputs over time) to track improvement.

Scaling Compute: If heavy testing is needed (e.g, generating thousands of queries), a platform
might manage the compute power or allow you to run attacks in parallel in the cloud, etc., so you're
not limited by one laptop script.

No-Code for Non-Experts: Perhaps one of the biggest advantages is empowering domain experts
or QA teams to participate in Al red teaming by using a guided interface. For instance, a content
moderation team member could use the platform to test if the Al catches certain slurs, without
needing to know how to script API calls.

The trade-off is cost and sometimes less flexibility than hand-crafted approaches. But if you want
to accelerate to Level 3 maturity, such a platform can be invaluable. It encapsulates the best
practices and automation that would otherwise take significant time to build in-house.

When using a platform, still keep humans in the loop to interpret and follow-up on results. And
validate its findings; no tool is perfect (false positives or negatives can occur). Use it to augment
your team, not replace careful analysis.

Al technology is evolving rapidly, and so are attack techniques. Make sure your red teaming
program is not static:

Continuous Improvement Framework

Quarterly Activities:
Review latest Al security research and conference findings
Update test scenarios based on new attack techniques
Analyze program metrics and identify improvement areas
Plan training updates for development teams

Annual Activities:
Conduct comprehensive external red team assessment
Benchmark program maturity against industry standards
Review and update Al security policies and procedures

Evaluate new tools and platform capabilities

Stay Updated: Follow research blogs, conferences (like DEF CON's Al Village findings, Black Hat talks
on Al security, etc.), and communities (the OWASP Al Security group, etc.). New exploits (e.g., prompt
injection via hidden unicode characters, or novel model inversion attacks) are regularly discovered.
Incorporate relevant ones into your testing.

Peer Reviews and Exercises: Consider participating in cross-company red team exercises or info-
sharing. Some companies do ‘red team share and tell" sessions under Chatham House Rule to
discuss what they found (anonymized) and how they fixed it. This helps everyone.

Periodic Full Red Team Events: Even if you have continuous automated testing, it's wise to do periodic
deep-dive red team operations, perhaps annually or when launching a major new Al system. Bring in
external experts to get fresh eyes occasionally; they might spot what biased insiders missed.

Metrics and Improvement: Track metrics like: number of findings by severity, time to remediate,
recurrence of similar issues, etc. If you see, for example, a trend that every red team finds a new
prompt injection variant, that might indicate a need for a systemic change (like a better prompt
management framework or more training for devs). Use metrics to drive investment (show
leadership "we reduced critical Al vulns by X% after implementing automated testing”).

The question is not so much “Do we need Al red teaming?” — if you leverage Al in any significant way,
the answer is increasingly yes — but rather “How soon and how effectively can we integrate Al red
teaming into our security strategy?”

Key Takeaways for Action:

Start immediately with manual testing of your highest-risk Al systems

Progress systematically through maturity levels with clear metrics and timelines
Leverage automation to achieve comprehensive coverage and sustainable operations
Integrate deeply with development workflows for maximum effectiveness

Measure continuously to demonstrate value and guide program evolution

The organizations succeeding in Al security combine human expertise with comprehensive
automated platforms, creating programs that detect vulnerabilities before attackers while enabling
rapid, secure Al innovation.

Your Al Red Teaming journey begins with the first test you conduct and the first vulnerability you
discover. The cost of waiting grows daily as Al deployments expand and attack techniques evolve.

Ready to accelerate your Al security maturity? to
discover how comprehensive automated testing can advance your organization from

basic manual testing to Level 3 continuous security validation.

The future of Al security depends on the actions you take today. Make them count.

https://www.mend.io/ai-red-teaming/

	Red_Teaming_Practical_Guide_Cover-04
	Page_2
	Page_3
	Page_4
	Page_5
	Page_6
	Page_7
	Page_8
	Page_9
	Page_10
	Page_11
	Page_12
	Page_13
	Page_14
	Page_15
	Page_16
	Page_17
	Page_18
	Page_19
	Page_20
	Page_21
	Page_22
	Page_23
	Page_24
	Page_25
	Page_26

